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Abstract

The object of the present paper is to study η-Ricci solitons on η-
Einstein (LCS)n-manifolds. It is shown that if ξ is a recurrent torse
forming η-Ricci soliton on an η-Einstein (LCS)n-manifold then ξ is (i)
concurrent and (ii) Killing vector field.
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1 Introduction

In 2003 Shaikh [33] introduced the notion of Lorentzian concircular structure
manifolds (briefly, (LCS)n-manifolds) with an example, which generalizes the
notion of LP-Sasakian manifolds introduced by Matsumoto [23] and also by Mi-
hai and Rosca [24]. Then Shaikh and Baishya ([36, 37]) investigated the appli-
cations of (LCS)n-manifolds to the general theory of relativity and cosmology.
The (LCS)n-manifolds are also studied by Atceken et al. ([3, 4, 19]), Hui [18],
Narain and Yadav [28], Prakasha [32], Shaikh and his co-authors ([34, 35], [38]–
[42]) and many others.
In 1982, Hamilton [14] introduced the notion of Ricci flow to find a canonical

metric on a smooth manifold. Then Ricci flow has become a powerful tool for
the study of Riemannian manifolds, especially for those manifolds with positive
curvature. Perelman ([30, 31]) used Ricci flow and its surgery to prove Poincare
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conjecture. The Ricci flow is an evolution equation for metrics on a Riemannian
manifold defined as follows:

∂

∂t
gij(t) = −2Rij .

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solu-
tion to the Ricci flow is called Ricci soliton if it moves only by a one parameter
group of diffeomorphism and scaling. A Ricci soliton (g, V, λ) on a Riemannian
manifold (M, g) is a generelization of Einstein metric such that [15]

£V g + 2S + 2λg = 0, (1.1)

where S is the Ricci tensor and £V is the Lie derivative along the vector field V
on M and λ is a real number. The Ricci soliton is said to be shrinking, steady
and expanding according as λ is negative, zero and positive respectively.
During the last two decades, the geometry of Ricci solitons has been the focus

of attention of many mathematicians. In particular, it has become more impor-
tant after Perelman applied Ricci solitons to solve the long standing Poincare
conjecture posed in 1904. In [44] Sharma studied the Ricci solitons in con-
tact geometry. Thereafter Ricci solitons in contact metric manifolds have been
studied by various authors such as Bagewadi et al. ([1, 2, 5, 22]), Bejan and
Crasmareanu [6], Blaga [7], Hui et al. ([9, 20, 21]), Chen and Deshmukh [10],
Deshmukh et. al [13], Nagaraja and Premalatta [27], Tripathi [45] and many
others. In this connection it may be mentioned that Hinterleitner and Kiosak
([16, 17]) studied special Ricci Solitons.
In [12] Cho and Kimura studied on Ricci solitons of real hypersurfaces in

a non-flat complex space form and they defined η-Ricci soliton, which satisfies
the equation

£ξg + 2S + 2λg + 2μη ⊗ η = 0, (1.2)

where λ and μ are real constants.
Motivated by the above studies the object of the present paper is to study

η-Ricci solitons on η-Einstein (LCS)n-manifolds. The paper is organized as
follows. Section 2 is concerned with preliminaries. Section 3 is devoted to the
study of η-Ricci solitons on η-Einstein (LCS)n-manifolds. It is proved that if ξ
is a recurrent torse forming η-Ricci soliton on an η-Einstein (LCS)n-manifold
(M, g, ξ, λ, μ, a, b) then ξ is (i) concurrent and (ii) Killing vector field. Also
it is shown that if the torse forming η-Ricci soliton on η-Einstein manifold is
regular, then any parallel symmetric (0,2) tensor field is a constant multiple of
the metric.

2 Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p ∈ M , the
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tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
(−,+, · · · ,+), where TpM denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector v ∈ TpM is said to be timelike (resp.,
non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp, ≤ 0, = 0, > 0)
[29].
We now recall the definitions of concircular, torse-forming, recurrent, con-

current and parallel vector fields, see [8, 11, 26, 25, 46].

Definition 2.1. In a pseudo Riemannian manifold (M, g), a vector field P
defined by

g(X,P ) = A(X),

for any X ∈ Γ(TM), the section of all smooth tangent vector fields on M , is
said to be a concircular vector field if

(∇XA)(Y ) = α{g(X,Y ) + ω(X)A(Y )}
where α is a non-zero scalar and ω is a closed 1-form and ∇ denotes the operator
of covariant differentiation with respect to the metric g.

Definition 2.2. A vector field ξ is called torse forming if it satisfies

∇Xξ = fX + γ(X)ξ (2.1)

for a smooth function f ∈ C∞(M) and γ is an 1-form, for all vector field X
on M . A torse forming vector field ξ is called recurrent if f = 0.

Definition 2.3. A vector field v is called concurrent vector field if it satisfies

∇Xv = 0 (2.2)

for any vector field X on M .

Definition 2.4. A tensor h of second order is said to be a parallel tensor if
∇h = 0.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike
concircular vector field ξ, called the characteristic vector field of the manifold.
Then we have

g(ξ, ξ) = −1. (2.3)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(X, ξ) = η(X), (2.4)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, α �= 0 (2.5)

that is,
∇Xξ = α[X + η(X)ξ]
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for all vector fields X, Y , where ∇ denotes the operator of covariant differentia-
tion with respect to the Lorentzian metric g and α is a non-zero scalar function
satisfies

∇Xα = (Xα) = dα(X) = ρη(X), (2.6)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φX =
1

α
∇Xξ, (2.7)

then from (2.5) and (2.7) we have

φX = X + η(X)ξ, (2.8)

from which it follows that φ is a symmetric (1,1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the
unit timelike concircular vector field ξ, its associated 1-form η and an (1,1)
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly,
(LCS)n-manifold), [34]. Especially, if we take α = 1, then we can obtain the
LP-Sasakian structure of Matsumoto [23]. In a (LCS)n-manifold (n > 2), the
following relations hold ([34, 36, 37, 38]):

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.9)

φ2X = X + η(X)ξ, (2.10)

S(X, ξ) = (n− 1)(α2 − ρ)η(X), (2.11)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.12)

R(ξ, Y )Z = (α2 − ρ)[g(Y, Z)ξ − η(Z)Y ], (2.13)

(∇Xφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X}, (2.14)

(Xρ) = dρ(X) = βη(X), (2.15)

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ)
{
g(Y, Z)η(X)− g(X,Z)η(Y )

}
ξ, (2.16)

for any vector fields X, Y , Z on M and β = −(ξρ) is a scalar function, where
R is the curvature tensor and S is the Ricci tensor of the manifold.

Definition 2.5. A (LCS)n-manifold (Mn, g) is said to be η-Einstein if its Ricci
tensor S of type (0,2) is of the form

S = ag + bη ⊗ η, (2.17)

where a and b are smooth functions on M .

Proposition 2.1. In an η-Einstein (LCS)n-manifold, the following relations
hold:

S(φX, Y ) = S(X,φY ) = ag(φX, Y ), (2.18)

S(X, ξ) = (a− b)η(X), S(ξ, ξ) = −(a− b), (2.19)

S(φX, φY ) = S(X,φ2Y ) = S(X,Y ) + (a− b)η(X)η(Y ). (2.20)

Proof. By virtue of (2.8) and (2.9), we have from (2.17) that (2.18). In view of
(2.4) and (2.9), we get from (2.17 that (2.19). Replacing Y by φY in (2.18) and
using (2.10) and (2.19), we get the relation (2.20).
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3 η-Ricci solitons on η-Einstein (LCS)n-manifolds

Definition 3.1. The metric tensor g on η-Einstein (LCS)n-manifold is said to
be η-Ricci soliton if it satifies the relation (1.2).

In this section, we study η-Ricci solitons on η-Einstein (LCS)n-manifolds
(M, g, ξ, λ, μ, a, b) and prove the following:

Theorem 3.1. If (M, g, ξ, λ, μ, a, b) is an η-Ricci soliton on an η-Einstein
(LCS)n-manifold, then
(i) a− b+ λ− μ = 0,
(ii) ξ is a geodesic vector field,
(iii) (∇ξφ)ξ = 0 and ∇ξη = 0,
(iv) ∇ξS = 0 and ∇ξQ = 0.

Proof. Let (M, g, ξ, λ, μ, a, b) be an η-Ricci soliton on η-Einstein (LCS)n-manifold.
In view of (2.17) we have from (1.2) that

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2[(a+ λ)g(X,Y ) + (b+ μ)η(X)η(Y )] = 0. (3.1)

Putting X = Y = ξ in (3.1) and using (2.9) we obtain g(∇ξξ, ξ) = a− b+λ−μ,
but g(∇Xξ, ξ) = 0 for any vector field X on M , since ξ has a constant norm.
Hence we get (i).
Consequently (3.1) becomes

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2(a+ λ)[g(X,Y ) + η(X)η(Y )] = 0. (3.2)

Setting Y = ξ in (3.2) we get g(∇ξξ,X) = 0 for any vector field X on M and
hence we have ∇ξξ = 0, i.e., ξ is a geodesic vector field. Thus we get (ii).
(iii) is obvious from (ii).
More precisely, the general expression for ∇S and ∇Q are

(∇XS)(Y, Z) = b[η(Y )g(Z,∇Xξ) + η(Z)g(Y,∇Xξ)]

and
(∇XQ)Y = b[η(Y )∇Xξ + g(Y,∇Xξ)ξ].

Putting X = Y = Z = ξ in above we get (iv).

Theorem 3.2. If ξ is a torse forming η-Ricci soliton on an η-Einstein (LCS)n-
manifold (M, g, ξ, λ, μ, a, b) then f = −(a+ λ), η is closed and

b = a− (n− 1)(a+ λ)2 and μ = λ+ (n− 1)(a+ λ)2.

Proof. Let ξ be a torse forming η-Ricci soliton on an η-Einstein (LCS)n-manifold
(M, g, ξ, λ, μ, a, b). Then we have from (2.1) that g(∇Xξ, ξ) = fη(X) − γ(X)
and hence we get γ = fη. Consequently (2.1) becomes

∇Xξ = f [X + η(X)ξ]. (3.3)
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Using (3.3) in (3.2), we get

(f + a+ λ)[g(X,Y ) + η(X)η(Y )] = 0 (3.4)

for all vector fields X and Y and hence it follows that f = −(a+ λ). Thus we
get from (3.3) that

∇Xξ = −(a+ λ)[X + η(X)ξ], (3.5)

which means that ∇Xξ is collinear to φ2X for all X and hence we get dη = 0,
i.e., η is closed.
It is known that

R(X,Y )ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X,Y ]ξ. (3.6)

In view of (3.5), (3.6) yields

R(X,Y )ξ = (a+ λ)2[η(Y )X − η(X)Y ]. (3.7)

From (3.7), we get
S(X, ξ) = (n− 1)(a+ λ)2η(X). (3.8)

From (2.19) and (3.8), we get b = a−(n−1)(a+λ)2 and μ = λ+(n−1)(a+λ)2.
Thus we get the theorem.

Corollary 3.1. If ξ is a recurrent torse forming η-Ricci soliton on an η-
Einstein (LCS)n-manifold (M, g, ξ, λ, μ, a, b) then ξ is (i) concurrent and (ii)
Killing vector field.

Proof. Since ξ is recurrent, therefore f = 0 and hence a+ λ = 0. So, by virtue
of (3.5) we get ∇Xξ = 0 for all X on M , which means that ξ is concurrent
vector field, i.e., (i). Also in that case

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 0

for all X, Y that means ξ is Killing vector field, i.e., (ii).

Corollary 3.2. If ξ is a torse forming Ricci soliton on an η-Einstein (LCS)n-
manifold (M, g, ξ, λ, a, b) then the Ricci soliton is shrinking, steady and expand-
ing according as a > b, a = b and a < b respectively.

Proof. In particular, if μ = 0 then from Theorem 3.2, we get

λ+ (n− 1)(a+ λ)2 = 0

and hence we obtain b = a+λ, i.e., λ = b− a. Hence the proof is complete.

Let ξ be a torse forming η-Ricci soliton on an η-Einstein (LCS)n-manifold
(M, g, ξ, λ, a, b) and let h be a (0,2) symmetric tensor field on (M, g, ξ, λ, a, b)
such that ∇h = 0. Then applying the Ricci identity [43]

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0, (3.9)



η-Ricci solitons on η-Einstein (LCS)n-manifolds 107

we obtain
h
(
R(X,Y )Z,W

)
+ h

(
Z,R(X,Y )W

)
= 0 (3.10)

for arbitrary vector fields X, Y , Z and W on (M, g, ξ, λ, a, b). Putting X = Z
= W = ξ in (3.10) and since h is symmetric, we get

h
(
ξ, R(ξ, Y )ξ

)
= 0, (3.11)

Using (3.7) in (3.11) we get

(a+ λ)2
[
h(Y, ξ) + η(Y )h(ξ, ξ)

]
= 0. (3.12)

Definition 3.2. The η-Ricci soliton on an η-Einstein manifold (LCS)n-manifold
is regular if (a+ λ) �= 0.

From regularity we have from (3.12) that

h(Y, ξ) + η(Y )h(ξ, ξ) = 0. (3.13)

Differentiating (3.13) covariantly and using (3.5) we get

h(X,Y ) = −h(ξ, ξ)g(X,Y ).

So by following the same method of [9], we can state the following:

Theorem 3.3. If the torse forming η-Ricci soliton on η-Einstein manifold
(M, g, ξ, λ, a, b) is regular, then any parallel symmetric (0,2) tensor field is a
constant multiple of the metric.
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[25] Mikeš, J., Rach̊unek, L.: Torse forming vector fields in T-semisymmetric Riemannian
spaces. In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen,
Debrecen, Hungary, 2000, 219–229.
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