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Abstract

We consider a semisymmetric metric connection in an almost Ken-
motsu manifold with its characteristic vector field ξ belonging to the
(k, μ)′-nullity distribution and (k, μ)-nullity distribution respectively. We
first obtain the expressions of the curvature tensor and Ricci tensor with
respect to the semisymmetric metric connection in an almost Kenmotsu
manifold with ξ belonging to (k, μ)′- and (k, μ)-nullity distribution re-
spectively. Then we characterize an almost Kenmotsu manifold with ξ
belonging to (k, μ)′-nullity distribution admitting a semisymmetric met-
ric connection.
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1 Introduction

In 1924, Friedmann and Schouten [12] introduced the idea of semisymmetric
connection on a differentiable manifold. A linear connection ∇̄ on a differen-
tiable manifold M is said to be a semisymmetric connection if the the torsion
tensor T of the connection ∇̄ satisfies

T (X,Y ) = η(Y )X − η(X)Y,
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where η is a 1-form and ξ is a vector field defined by

η(X) = g(X, ξ)

for all vector fields X ∈ χ(M), where χ(M) is the set off all differentiable vector
fields on M .
In, 1932, Hayden [14] introduce the idea of semisymmetric metric connection
on a Riemannian manifold (M, g). A semisymmetric connection ∇̄ is said to be
a semisymmetric metric connection if ∇̄g = 0. K. Yano [30] started to study
the systematic study on semi-symmetric metric connection and this was further
studied by T. Imai [15], M. Pravanović and N. Pušić [21], N. Pušić [22], Lj. S.
Velimirović et al ([25, 26]), R. S. Mishra [18], U. C. De and G. Pathak [8], T. Q.
Binh [4], Y. Liang [17], P. Zhao and H. Song [32], Z. I. Szabó [23], Ajit Barman
([5, 6, 7]) and many others.
The notoin of k-nullity distribution was introduced by Gray [13] and Tanno

[24] in the study of Riemannian manifolds (M, g), which is defined for any p ∈M
and k ∈ R as follows:

Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]}, (1.1)

for any X,Y ∈ TpM , where TpM denotes the tangent vector space of M at
any point p ∈M and R denotes the Riemannian curvature tensor of type (1,3).
Blair, Koufogiorgos and Papantoniou [1] introduced a generalized notion of the
k-nullity distribution, named the (k, μ)-nullity distribution on a contact metric
manifold (M2n+1, φ, ξ, η, g), which is defined for any p ∈ M and k, μ ∈ R as
follows:

Np(k, μ) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+ μ[g(Y, Z)hX − g(X,Z)hY ]}, (1.2)

where h = 1
2£ξφ and £ denotes the Lie derivative.

In ([9],[10],[19]) Dileo and Pastore introduce the notion of (k, μ)′-nullity dis-
tribution, another generalized notion of the k-nullity distribution, on an almost
Kenmotsu manifold (M2n+1, φ, ξ, η, g), which is defined for any p ∈M2n+1 and
k, μ ∈ R as follows:

Np(k, μ)
′ = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+ μ[g(Y, Z)h′X − g(X,Z)h′Y ]}, (1.3)

where h′ = h ◦ φ.
A Riemannian manifold is said to be Ricci semisymmetric if R(X,Y ).S = 0,

where S denotes the Ricci tensor of type (0,2). This paper is organized in the
following way. In Section 2, we give a brief account on an almost Kenmotsu
manifold, while Section 3 contains some results on an almost Kenmotsu man-
ifold with ξ belonging to the (k, μ)′-nullity distribution. In Section 4, we first
obtain the expressions for the curvature tensor and Ricci tensor with respect to
the semisymmetric metric connection and also we prove that in an almost Ken-
motsu manifold with ξ belonging to the (k, μ)′-nullity distribution the manifold
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is an Einstein manifold with respect to the semisymmetric metric connection.
In Section 5, we characterize Ricci semisymmetric almost Kenmotsu manifold
with ξ belonging to the (k, μ)′-nullity distribution. In Section 6, we consider an
almost Kenmotsu manifold with ξ belonging to the (k, μ)′-nullity distribution
satisfying the curvature condition C̄.S̄ = 0, where C̄ denotes the Weyl con-
formal curvature tensor with respect to the semisymmetric metric connection.
Finally, we prove that in an almost Kenmotsu manifold with ξ belonging to
the (k, μ)-nullity distribution the manifold is Ricci semisymmetric if and only if
the manifold is an Einstein manifold with respect to the semisymmetric metric
connection.

2 Almost Kenmotsu manifolds

A differentiable (2n + 1)-dimensional manifold M is said to have a (φ, ξ, η)-
structure or an almost contact structure, if it admits a (1, 1) tensor field φ, a
characteristic vector field ξ and a 1-form η satisfying ([2, 3]),

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I denote the identity endomorphism. Here also φξ = 0 and η ◦ φ = 0;
both can be derived from (2.1) easily.
If a manifold M with a (φ, ξ, η)-structure admits a Reimannian metric g such
that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y of TpM2n+1, thenM is said to have an almost contact
structure (φ, ξ, η, g). The fundamental 2-form Φ on an almost contact metric
manifold is defined by Φ(X,Y ) = g(X,ΦY ) for any X, Y of TpM2n+1. The
condition for an almost contact metric manifold being normal is equivalent to
vanishing of the (1,2)-type torsion tensor Nφ, defined by

Nφ = [φ, φ] + 2dη ⊗ ξ,

where [φ, φ] is the Nijenhuis torsion of φ [2]. Recently in ([9, 10, 11, 19, 20]),
almost contact metric manifold such that η is closed and dΦ = 2η∧Φ are studied
and they are called almost Kenmotsu manifolds. Obviously, a normal almost
Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
characterized by

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

for any vector fields X, Y . It is well known [16] that a Kenmotsu manifold
M2n+1 is locally a warped product I ×f N

2n where N2n is a Kähler manifold,
I is an open interval with coordinate t and the warping function f , defined by
f = cet for some positive constant c. Let us denote the distribution orthogonal
to ξ by D and defined by D = Ker(η) = Im(φ). In an almost Kenmotsu
manifold, since η is closed, D is an intregrable distribution. Let M2n+1 be
an almost Kenmotsu manifold. We denote by h = 1

2£ξφ and l = R(·, ξ)ξ
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on M2n+1. The tensor fields l and h are symmetric operators and satisfy the
following relations [19]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0, (2.2)

∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0), (2.3)

φlφ− l = 2(h2 − φ2), (2.4)

R(X,Y )ξ = η(X)(Y −φhY )− η(Y )(X−φhX)+ (∇Y φh)X − (∇Xφh)Y, (2.5)

for any vector fields X,Y . The (1,1)-type symmetric tensor field h′ = h ◦ φ is
anticommuting with φ and h′ξ = 0. Also it is clear that ([9, 29])

h = 0 ⇔ h′ = 0, h′2 = (k + 1)φ2 (⇔ h2 = (k + 1)φ2). (2.6)

Almost Kenmotsu manifold have been studied by several authors such as
Dileo and Pastore ([9, 10, 11]), Wang and X. Liu ([27, 28, 29]) and many others.

3 ξ belongs to the (k, μ)′-nullity distribution

This section is devoted to study almost Kenmotsu manifolds with ξ belonging
to the (k, μ)′-nullity distribution. Let X ∈ D be the eigen vector of h′ corre-
sponding to the eigen value λ. Then from (2.6) it is clear that λ2 = −(k+1), a
constant. Therefore k ≤ −1 and λ = ±√−k − 1. We denote by [λ]′ and [−λ]′
the corresponding eigenspaces related to the non-zero eigen value λ and −λ of
h′, respectively. Before presenting our main theorems we recall some results:

Lemma 3.1. (Prop. 4.1 and Prop. 4.3 of [9]) Let (M2n+1, φ, ξ, η, g) be an
almost Kenmotsu manifold such that ξ belongs to the (k, μ)′-nullity distribution
and h′ �= 0. Then k < −1, μ = −2 and Spec (h′) = {0, λ,−λ}, with 0 as
simple eigen value and λ =

√−k − 1. The distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′
are integrable with totally geodesic leaves. The distributions [λ]′ and [−λ]′ are
integrable with totally umbilical leaves. Furthermore, the sectional curvature are
given by the following:

(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and
K(X, ξ) = k + 2λ if X ∈ [−λ]′,

(b) K(X,Y ) = k − 2λ if X,Y ∈ [λ]′;
K(X,Y ) = k + 2λ if X,Y ∈ [−λ]′ and
K(X,Y ) = −(k + 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

Lemma 3.2. (Lemma 3 of [27]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu
manifold with ξ belonging to the (k, μ)′-nullity distribution and h′ �= 0. If n > 1,
then the Ricci operator Q of M2n+1 is given by

Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′. (3.1)

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).
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Lemma 3.3. (Proposition 4.2 of [9]) Let (M2n+1, φ, ξ, η, g) be an almost Ken-
motsu manifold such that h′ �= 0 and ξ belongs to the (k,−2)′-nullity distribu-
tion. Then for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the Rieman-
nian curvature tensor satisfies

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

From (1.3) we have,

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + μ[η(Y )h′X − η(X)h′Y ], (3.2)

where k, μ ∈ R. Also we get from (3.2)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + μ[g(h′X,Y )ξ − η(Y )h′X]. (3.3)

Contracting X in (3.2) we have

S(Y, ξ) = 2nkη(Y ). (3.4)

Moreover in an almost Kenmotsu manifold with (k, μ)′-nullity distribution,

∇Xξ = X − η(X)ξ + h′X (3.5)

and

(∇Xη)Y = g(Y,X)− η(X)η(Y ) + g(Y, h′X) (3.6)

4 Curvature tensor of an almost Kenmotsu manifold with
(k, μ)′-nullity distribution with respect to the semisym-
metric metric connection

Let ∇ be the Riemannian connection. Also let R be the curvature tensor of ∇
and R̄ be the curvature tensor of ∇̄ in an almost contact metric manifold. In
view of [30] R and R̄ are related by

R̄(X,Y )Z = R(X,Y )Z − α(Y, Z)X + α(X,Z)Y − g(Y, Z)AX + g(X,Z)AY,
(4.1)

where α is a (0, 2) tensor defined by

α(X,Y ) = (∇Xη)Y − η(X)η(Y ) +
1

2
η(ξ)g(X,Y ), (4.2)
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and
g(AX, Y ) = α(X,Y ), (4.3)

Using (2.1), (3.5), and (3.6) we get from (4.2) and (4.3),

α(X,Y ) =
3

2
g(X,Y ) + g(X,h′Y )− 2η(X)η(Y ) (4.4)

and

AX =
3

2
X − 2η(X)ξ + h′X (4.5)

Using (4.4) and (4.5) in (4.1) we get,

R̄(X,Y )Z = R(X,Y )Z − 3g(Y, Z)X + 3g(X,Z)Y

− g(Z, h′Y )X + g(Z, h′X)Y + 2g(Y, Z)η(X)ξ

− 2g(X,Z)η(Y )ξ − g(Y, Z)h′X + g(X,Z)h′Y
+ 2η(Y )η(Z)X − 2η(X)η(Z)Y, (4.6)

Setting X = ξ in (4.6), we get

R̄(ξ, Y )Z = R(ξ, Y )Z − g(Y, Z)ξ − g(Z, h′Y )ξ + η(Z)h′Y + η(Z)Y, (4.7)

Using (1.3) in (4.7) we get,

R̄(ξ, Y )Z = (k − 1)g(Y, Z)ξ − 3g(z, h′Y )ξ − (k − 1)η(Z)Y + 3η(Z)h′Y. (4.8)

Setting Z = ξ in (4.8) we have,

R̄(ξ, Y )ξ = (k − 1)η(Y )ξ − (k − 1)Y + 3h′Y. (4.9)

Taking inner product with W of (4.6),

R̄(X,Y, Z,W ) = g(R(X,Y )Z,W )− 3g(Y, Z)g(X,W ) + 3g(X,Z)g(Y,W )

− g(Z, h′Y )g(X,W ) + g(Z, h′X)g(Y,W ) + 2g(Y, Z)η(X)η(W )

− 2g(X,Z)η(Y )η(W )− g(Y, Z)g(h′X,W ) + g(X,Z)g(h′Y,W )

+ 2η(Y )η(Z)X − 2η(X)η(Z)Y, (4.10)

Substituting X = W = ei in (4.10), where {e1, e2, . . . , e2n+1} be a local or-
thonormal basis of vector fields in M and taking summation over i, 1 ≤ i ≤
(2n+ 1) , then (4.10) takes the form

S̄(Y, Z) = S(Y, Z)−2ng(h′Y, Z)−2(3n−1)g(Y, Z)+2(2n−1)η(Y )η(Z), (4.11)

where S and S̄ denote the Ricci tensor of M with respect to ∇ and ∇̄ respec-
tively. Hence we have following theorem:
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Theorem 4.1. For an almost Kenmotsu manifold (M, g) with respect to the
semisymmetric metric connection ∇̄
(a) The curvature tensor is given by (4.6),
(b) The Ricci tensor S̄ is Symmetric,
(c) R̄(X,Y, Z,W ) + R̄(Y,X,W,Z) = 0,
(d) R̄(X,Y, Z,W ) + R̄(X,Y,W,Z) = 0,
(e) R̄(X,Y, Z,W ) = R̄(Z,W,X, Y ),
(f) S̄(ξ,X) = 2n(k−1)η(X), where X,Y, Z,W are the vector fields on M2n+1.

Now from (3.1), it follows that

S(Y, Z) = −2ng(Y, Z) + 2n(k + 1)η(Y )η(Z)− 2ng(h′Y, Z). (4.12)

Letting Y, Z ∈ [λ]′. Then from (4.12) it follows that

S(Y, Z) = −2n(1 + λ)g(Y, Z). (4.13)

Now from (4.11), using (4.13) and the fact Y, Z ∈ [λ]′ we get,

S̄(Y, Z) = 2[1− 2n(λ+ 2)]g(Y, Z).

This leads to the following:

Theorem 4.2. In an almost Kenmotsu manifold with ξ belongs to the (k, μ)′-
nullity distribution, the manifold is an Einstein manifold with respect to the
semisymmetric metric connection.

5 Ricci semisymmetric almost Kenmotsu manifolds with
ξ belongs to (k, μ)′-nullity distribution with respect to
semisymmetric metric connection

In this section we characterize Ricci semisymmetric almost Kenmotsu manifolds
with respect to the semisymmetric metric connection, that is, R̄.S̄ = 0.
Now we prove the following:

Theorem 5.1. Let, M2n+1 be an almost Kenmotsu manifold with character-
stic vector ξ belonging to (k, μ)′-nullity distribution with h′ �= 0. If the manifold
is Ricci semisymmetric with respect to the semisymmetric connection then the
following cases occur:
(i) Einstein manifold with respect to the semisymmetric metric connection.
(ii) locally isometric to the Riemannian product of an (n+1)-dimensional man-
ifold with constant sectional curvature −4 and a flat n-dimensional manifold.
(iii) locally isometric to the Riemannian product of an n+1 dimensional mani-
fold with constant sectional curvature −9 and n-dimensional manifold with con-
stant sectional curvature −1.

Proof. Suppose, (R̄(X,Y ).S̄)(Z,W ) = 0 for all vector fields X, Y , Z, W . This
implies,

S̄(R̄(X,Y )Z,W ) + S̄(Z, R̄(X,Y )W ) = 0. (5.1)
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Putting X = Z = ξ in (5.1), we get

S̄(R̄(ξ, Y )ξ,W ) + S̄(ξ, R̄(ξ, Y )W ) = 0. (5.2)

Using (4.8) and (4.9) we get from (5.2),

−(k−1)S̄(Y,W )+3S̄(h′Y,W )+2n(k−1)2g(Y,W )−6n(k−1)g(h′Y,w) = 0 (5.3)

for any vector fields Y,W on M2n+1.
Substituting Y = h′Y in (5.3) we get

− (k − 1)S̄(h′Y,W ) + 3S̄(h′2Y,W ) + 2n(k − 1)2g(h′Y,W )

− 6n(k − 1)g(h′2Y,W ) = 0. (5.4)

Again substituting h′2 = (k + 1)φ2 in (5.4) ,

− (k − 1)S̄(h′Y,W )− 3(k + 1)S̄(Y,W ) + 2n(k − 1)2g(h′Y,W )

+ 6n(k − 1)2g(Y,W ) = 0. (5.5)

From (5.3) and (5.5) we have,

(k + 2)(k + 5)[S̄(Y,W )− 2n(k − 1)g(Y,W )] = 0.

Then the following cases arise:

Case 1:
S̄(Y,W )− 2n(k − 1)g(Y,W ) = 0,

which implies that the manifold is an Einstein manifold with respect to the
semisymmetric metric connection.

Case 2: (k + 2) = 0, that is, k = −2.
Without loss of generality we may choose λ = 1. Then we have from Lemma 3.3,

R(Xλ, Y λ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = 0,

for any vector field Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. Also noticing
μ = −2, it follows from Lemma 3.1 that K(X, ξ) = −4 for any X ∈ [λ]′

and K(X, ξ) = 0 for any X ∈ [−λ]′. Again from Lemma 3.1, we see that
K(X,Y ) = −4 for any X,Y ∈ [λ]′; K(X,Y ) = 0 for any X,Y ∈ [−λ]′ and
K(X,Y ) = 0 for any X ∈ [λ]′, Y ∈ [−λ]′. As is shown [9] that the distribution
[ξ] ⊕ [λ]′ is intregrable with totally geodesic leaves and the distribution [−λ]′
is intregrable with totally umbilical leaves by H = −(1 − λ)ξ, where H is the
mean curvature vector field for the leaves of [−λ]′ immersed in M2n+1. Here
λ = 1, then two orthogonal distributions [ξ]⊕ [λ]′ and [−λ]′ are both integrable
with totally geodesic leaves immersed in M2n+1. Then we can say that M2n+1

is locally isometric to H2n+1(−4)× R
n.
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Case 3: k + 5 = 0, that is, k = −5. Without loss of generality we may choose
λ = 2. Then we have from Lemma 3.3,

R(Xλ, Yλ)Zλ = −9[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = [g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ],

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. Also noticing μ = −2 it
follows from Lemma 3.1, K(X, ξ) = −9 for any X ∈ [λ]′ and K(X, ξ) = −1
for any X ∈ [−λ]′. Again from Lemma 3.1 we see that K(X,Y ) = −9 for
any X,Y ∈ [λ]′; K(X,Y ) = −1 for any X,Y ∈ [−λ]′ and K(X,Y ) = 3 for
any X ∈ [λ]′, Y ∈ [−λ]′. As is shown [9] that the distribution [ξ] ⊕ [λ]′ is
intregrable with totally geodesic leaves and the distribution [−λ]′ is intregrable
with totally umbilical leaves by H = −(1−λ)ξ, where H is the mean curvature
vector field for the leaves of [−λ]′ immersed in M2n+1. Here λ = 2, then two
orthogonal distributions [ξ] ⊕ [λ]′ and [−λ]′ are both integrable with totally
geodesic leaves immersed in M2n+1. Then we can say that M2n+1 is locally
isometric to H2n+1(−9)× R

n.

6 Almost Kenmotsu manifolds with ξ belongs to (k, μ)′-
nullity distribution with respect to the semisymmetric
metric connection satisfying C̄.S̄ = 0

This section deals with the study of an almost Kenmotsu manifold with ξ be-
longing to the (k, μ)′-nullity distribution and h′ �= 0 satisfying the curvature
condition C̄.S̄ = 0, where C̄ is the Weyl conformal curvature tensor with re-
spect to the semisymmetric metric connection. The Weyl conformal curvature
tensor C on a (2n+ 1)-dimensional Riemannian manifold is defined by [31],

C(X,Y )Z = R(X,Y )Z − 1

(2n− 1)
[S(Y, Z)X

− S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ], (6.1)

where, X,Y, Z are any vector fields, S is the Ricci tensor of type (0, 2) and Q is
the Ricci operator defined by S(X,Y ) = g(QX, Y ). Using the results (3.1) and
(3.3) one can easily obtain the following:

C(ξ, Y )Z = (μ+
2n

(2n− 1)
)[g(h′Y, Z)ξ − η(Z)h′Y ], (6.2)

Putting Z = ξ we get,

C(ξ, Y )ξ = −(μ+
2n

(2n− 1)
)h′Y, (6.3)

Now we prove the following:
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Theorem 6.1. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with ξ
belonging to the (k, μ)′-nullity distribution. If C̄.S̄ = 0, then the manifold is an
Einstein one with respect to the semisymmetric metric connection.

Proof. Now (C̄(X,Y ).S̄)(U, V ) = 0 implies

S̄(C̄(X,Y )U, V ) + S̄(U, C̄(X,Y )V ) = 0, (6.4)

Setting X = U = ξ in (6.4), we have

S̄(C̄(ξ, Y )ξ, V ) + S̄(ξ, C̄(ξ, Y )V ) = 0. (6.5)

Using (6.2) and (6.3) we get from (6.5),

S̄(h′Y, V )− g(h′Y, V )S̄(ξ, ξ) = 0. (6.6)

By the help of (3.1) and (4.11) we get from (6.6),

S̄(h′Y, V )− 2n(k − 1)g(h′Y, V ) = 0. (6.7)

Setting Y = h′Y in (6.6) we get,

S̄(h′2Y, V )− 2n(k − 1)g(h′2Y, V ) = 0. (6.8)

Putting h′2 = (k + 1)φ2 in (6.8), we get,

S̄((k + 1)φ2Y, V )− 2n(k − 1)g((k + 1)φ2Y, V ) = 0.

which implies that,

(k + 1)[S̄(Y, V )− 2n(k − 1)g(Y, V )] = 0,

for any vector fields Y, V on M2n+1.
Suppose (k + 1) = 0, that is k = −1. Dileo and Pastore [9] prove that in
almost Kenmotsu manifold with ξ belonging to the (k, μ)′-nullity distribution if
k = −1, then h′ = 0 and the manifold M2n+1 is locally a wrapped product of
an almost Kähler manifold and an open interval. Thus k + 1 = 0, contradicts
our hypothesis h′ �= 0.
Therefore, S̄(Y, V ) = 2n(k − 1)g(Y, V ) , for any vector fields V, Y on M2n+1.
Thus the manifold is an Einstein manifold with respect to the semisymmetric
metric connection.

7 ξ belongs to the (k, μ)-nullity distribution

In this section we study R̄.S̄ = 0 on an almost Kenmotsu manifolds with ξ
belonging to the (k, μ)-nullity distribution, where R̄ and S̄ are the Rieman-
nian curvature tensor and Ricci tensor with respect to semisymmetric metric
connection ∇̄. From (1.2) we obtain

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + μ[η(Y )hX − η(X)hY ], (7.1)

where k, μ ∈ R. Before proving our main results in this section we first state
the following:



On a semi-symmetric metric connection. . . 97

Lemma 7.1. [9] Let M2n+1 be an almost Kenmotsu manifold of dimension
(2n + 1). Suppose that the characterstic vector field ξ belonging to the (k, μ)-
nullity distribution. Then k = −1, h = 0 and M2n+1 is locally a wrapped
product of an open interval and an almost Kähler manifold.

In view of Lemma 7.1 it follows from (7.1),

R(X,Y )ξ = η(X)Y − η(Y )X, (7.2)

R(ξ,X)Y = −g(X,Y )ξ + η(Y )X, (7.3)

S(X, ξ) = −2nη(X), (7.4)

for any vector fields X,Y on M2n+1. Let, R and R̄ be the curvature tensor of
∇ and ∇̄ respectively. Then R and R̄ are related by [30],

R̄(X,Y )Z = R(X,Y )Z − α(Y, Z)X + α(X,Z)Y

−g(Y, Z)AX + g(X,Z)AY, (7.5)

where

α(X,Y ) =
3

2
g(X,Y )− 2η(X)η(Y ), (7.6)

and

AX =
3

2
X − 2η(X)ξ, (7.7)

Using (7.6) and (7.7) we get from (7.5),

R̄(X,Y )Z = R(X,Y )Z − 3g(Y, Z)X + 3g(X,Z)Y

+ 2g(Y, Z)η(X)ξ − 2g(X,Z)η(Y )ξ + 2η(Y )η(Z)X − 2η(X)η(Z)Y, (7.8)

Putting X = ξ in (7.8),

R̄(ξ, Y )Z = R(ξ, Y )Z − g(Y, Z)ξ + η(Z)Y, (7.9)

Using (7.3) we get from (7.9),

R̄(ξ, Y )Z = −2η(Y )ξ + 2Y, (7.10)

Substituting Z = ξ in (7.10) we have,

R̄(ξ, Y )ξ = −2η(Y )ξ + 2Y. (7.11)

Contracting X in (7.8) gives

S̄(Y, Z) = S(Y, Z)− 3(2n+ 1)g(Y, Z) + (2n− 3)η(Y )η(Z). (7.12)

Setting Y = ξ in (7.12),

S̄(ξ,W ) = S(ξ,W )− (4n+ 1)η(W ). (7.13)
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By the help of (4.3) we get,

S̄(ξ,W ) = −(6n+ 1)η(W ), (7.14)

Putting W = ξ we get,
S̄(ξ, ξ) = −(6n+ 1). (7.15)

Now we are in a position to state and proof our main theorem in this section:

Theorem 7.1. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with
ξ belonging to the (k, μ)-nullity distribution. Then M2n+1 is Ricci semisym-
metric if and only if the manifold is an Einstein manifold with respect to the
semisymmetric metric connection.

Proof. Now (R̄(X,Y ).S̄)(Z,W ) = 0 implies

S̄(R̄(X,Y )Z,W ) + S̄(Z, R̄(X,Y )W ) = 0. (7.16)

Putting X = Z = ξ in (7.16) and using (7.10) we have,

S̄(−2η(Y )ξ + 2Y,W ) + S̄(ξ,−2g(Y,W )ξ + 2η(W )Y ) = 0. (7.17)

Using (7.14) and (7.15) we get,

S̄(Y,W ) + (1 + 6n)g(Y,W ) = 0.

which implies that the manifold is an Einstein manifold with respect to the
semisymmetric metric connection.
Cnversely, let the manifold is an Einstein manifold. Then obviously R̄.S̄ = 0.
This complete the proof.
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[23] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X,Y ).R = 0. I. The
local version. J. Differential Geom. 17, 4 (1982), 531–582.

[24] Tanno, S.: Some differential equation on Reimannian manifolds. J. Math. Soc. Japan
30 (1978), 509–531.
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