Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 55, 2 (2016) 29-40

Projective Curvature Tensor
in 3-dimensional Connected

Trans-Sasakian Manifolds

Krishnendu DE !, Uday Chand DE 2

! Konnagar High School (H.S.), 68 G.T. Road (West), Konnagar, Hooghly,
Pin. 712235, West Bengal, India
e-mail: krishnendude@yahoo.com

2 Department of Pure Mathematics, Calcutta University,
85 Ballygunge Circular Road Kol 700019, West Bengal, India
e-mail: uc_de@yahoo.com

(Received April 4, 2013)

Abstract

The object of the present paper is to study &-projectively flat and ¢-
projectively flat 3-dimensional connected trans-Sasakian manifolds. Also
we study the geometric properties of connected trans-Sasakian manifolds
when it is projectively semi-symmetric. Finally, we give some examples
of a 3-dimensional trans-Sasakian manifold which verifies our result.
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1 Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost
contact metric structures by Chinea and Gonzales [6] and they appear as a
natural generalization of both Sasakian and Kenmotsu manifolds. Again in the
Gray—Hervella classification of almost Hermite manifolds [11], there appears a
class Wy of Hermitian manifolds which are closely related to locally conformally
Kéhler manifolds. An almost contact metric structure on a manifold M is called
a trans-Sasakian structure [21] if the product manifold M x R belongs to the
class Wy. The class Cg @ Cs ([15, 16]) coincides with the class of trans-Sasakian
structures of type («, 8). In [16], the local nature of the two subclasses Cs and Cg
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of trans-Sasakian structures is characterized completely. In [7], some curvature
identities and sectional curvatures for Cs, Cg and trans-Sasakian manifolds are
obtained. It is known that [12] trans-Sasakian structures of type (0,0), (0, 3),
and («,0) are cosymplectic, S-Kenmotsu and «-Sasakian respectively where
a,p eR.

The local structure of trans-Sasakian manifolds of dimension n > 5 has been
completely characterized by Marrero [15]. He proved that a trans-Sasakian man-
ifold of dimension n > 5 is either cosymplectic or a-Sasakian or S-Kenmotsu
manifold. Hence proper trans-Sasakian manifold exists only for three dimen-
sion. In this context we can mention that some authors have studied (2n + 1)-
dimensional trans-Sasakian manifolds, such as ([1, 13]) and many others. But
these results are not true for proper trans-Sasakian manifolds. Three-dimensional
trans-Sasakian manifolds have been studied by De and Tripathi [10], De and
Sarkar [9], De and De [8], Shukla and Singh [23] and many others. Sasakian
spaces were studied by [17, 19, 18].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a n-dimensional Riemannian manifold. If
there exist an one-to-one correspondence between each coordinate neighborhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said
to be locally projectively flat. For n > 3, M is locally projectively flat if and
only if the well known projective curvature tensor P vanishes. Here P is defined
by [20]

P(X,Y)Z =R(X,Y)Z — ﬁ{S(Y, Z)X — S(X,2)Y}, (1.1)

for X,Y,Z € T(M), where R is the curvature tensor and S is the Ricci tensor.
In fact, M is projectively flat (that is, P = 0) if and only if the manifold is of
constant curvature [26, pp. 84-85]. Thus, the projective curvature tensor is a
measure of the failure of a Riemannian manifold to be of constant curvature.
A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([14, 18, 24, 25]) if R(X,Y).R = 0, where R is the Riemannian curvature tensor
and R(X,Y) is considered as a derivation of the tensor algebra at each point
of the manifold for tangent vectors X, Y. If a Riemannian manifold satisfies
R(X,Y).P = 0, then the manifold is said to be projectively semi-symmetric
manifold. In [18, p. 286, p. 329] there is proved that projectively semi-symmetric
spaces are semi-symmetric.

The paper is organized as follows. In section 2, some preliminary results
are recalled. After preliminaries in section 3, we prove that a 3-dimensional
compact connected trans-Sasakian manifold is &-projectively flat if and only if
the manifold is a-Sasakian. In the next section, we prove that a 3-dimensional
connected trans-Sasakian manifold is ¢-projectively flat if and only if it is an
Einstein manifold provided «, 8 = constant. In section 5, we prove that a 3-
dimensional connected trans-Sasakian manifold is projectively semisymmetric
if and only if the manifold is projectively flat, provided ¢(grada) = grad .
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Finally, we construct some examples of a 3-dimensional trans-Sasakian manifold
with constant function «, 8 on M.

2 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (4, &,n, g), that is, ¢ is an (1,1) tensor field, £ is a vector field,
n is a 1-form and g is a compatible Riemannian metric such that

P*(X) = =X +n(X)¢, n(€) =1, =0, np=0 (2.1)
9(¢X,0Y) = g(X,Y) — n(X)n(Y)
g(X, ¢Y) = _g(¢X7 Y)7 g(X,f) = 77(X>

for all X and Y tangent to M ([2, 3]).
The fundamental 2-form of the manifold is defined by

P(X,)Y) =g(X,9Y) (2.4)

for all X and Y tangent to M.

An almost contact metric structure (¢, &, 7, g) on a connected manifold M is
called a trans-Sasakian structure [21] if (M x R,J, G) belongs to the class Wy
[11], where J is the almost complex structure on M x R defined by

J(X, f ) = (6X — t&,0(X) %),

for any vector fields X on M, f is a smooth function on M x R and G is the
product metric on M x R. This may be expressed by the condition [4]

(Vx@)Y = a(g(X,Y)§ = n(Y)X) + B(g(6X,Y)§ = n(Y)¢X) (2.5)

for smooth functions a and § on M. Hence we say that the trans-Sasakian
structure is of type («, 3). From (2.5) it follows that

Vx¢ = —a(¢X) + (X —n(X)E), (2.6)
(Vx@)Y = —ag(¢X,Y) + Bg(¢X, ¢Y). (2.7)

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [15]. In [10], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given. From
[10] we know that for a 3-dimensional trans-Sasakian manifold

208+ fa = 0, (2.8)
S(X,6) = (2(a® = %) = €8)n(X) — XB — (¢X)a, (2.9)
S(va) = (% +£ﬁ - (a2 - 52)) g(Xv Y)

— (5 +&8—=3(a? = B2) n(X)n(Y)
— (YB+ (¢Y)a)n(X) — (XB+ (¢ X)a)n(Y), (2.10)
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R(X,Y)¢ = (a® = B*)(n(Y)X — n(X)Y)
—n(Y)XB)E+ ¢(X)ag +n(X)(YB)E+ ¢(Y)a
—(YB)X +(XB)Y — (o(Y)a)X + (6(X)a)Y, (2.11)

and

R(X,Y)Z = (L +2¢8—2(a? — B?)) (9(Y, 2)X — g(X, Z)Y
—9(Y,2)[ (5 + €8 —3(a® = 7)) n(X)¢

—n(X)(pgrada — grad §) + (X8 + (¢X)a)¢]
+9(X, 2)[ (5 +E&8—3(a® = 7)) n(Y)E

—n(Y)(¢grada — grad 8) + (Y + (¢Y))¢]

~[(ZB+ (¢Z)a)n(Y) + (Y B + (¢Y)a)n(Z)

+5+E6-3( = B)m(Y)n(2)] X
+ [(ZB + (6Z)a)n(X) + (X B + (¢ X)a)n(Z)
+ 5+ E8=3(a” = B2)n(X)n(2)]Y, (2.12)

where S is the Ricci tensor of type (0,2) and R is the curvature tensor of type
(1,3) and r is the scalar curvature of the manifold M.

3 3-dimensional ¢-projectively flat trans-Sasakian mani-
folds

¢-conformally flat K-contact manifolds have been studied by Zhen, Cabrerizo
and Fernandez [28]. In this section we study ¢-projectively flat connected
transSasakian manifolds. Analogous to the definition of {-conformally flat K-
contact manifold we define {-projectively flat connected trans-Sasakian mani-
folds.

Definition 3.1. A connected trans-Sasakian manifold M is called &-projectively
flat if the condition P(X,Y)¢ = 0 holds on M, where projective curvature tensor
P is defined by (1.1).
Putting Z = ¢ in (1.1) and using (2.9) and (2.11), we get
P(X,Y)¢ = —3{(YB)X — (XB)Y} + {(YB)n(X) — (XB)n(Y)}¢
+ Ya)oX — (Xa)oY + 2a8{n(Y)oX — n(X)oY }
+3l(0Y)aX — (pX)aY + (E8){n(Y)X —n(X)Y}. (3.1)

Now assume that M is a 3-dimensional compact connected &-projectively
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flat trans-Sasakian manifold. Then from (3.1) we can write

—H{(YBX — (XBY} +{(YB)n(X) — (XB)n(Y)}¢
+ (Ya)oX — (Xa)gY + 2a8{n(Y)¢X —n(X)oY}
+5l(@Y)aX — (¢X)aY + (£8)(n(Y)X —n(X)Y)}] =0. (3.2)

Putting Y = £ in the above equation and using (2.8), we obtain
(XB)§ + (9 X)ag = (£8)n(X)E =0

which implies
(XB) + (¢X)a — (£8)n(X) = 0. (3.3)

The gradient of the function ( is related to the exterior derivative dB by the
formula

dp(X) = g(grad 5, X). (3-4)
Using (3.4) in (3.3) we obtain
dB(X) + g(grad a, ¢ X)) — dB(§)n(X) = 0. (3.5)

Differentiating (3.5) covariantly along Y, we get

(VydB)(X) + g(Vy grad o, X)) + g(grad o, (Vy ¢) X)
— (VydB)én(X) — (£6)(Vyn)(X) = 0. (3.6)

Hence, by antisymmetrization with respect to X and Y, we have

9(Vy grad o, X ) — g(Vx grad o, ¢Y)
+(Vy@)X = (Vx9)Y)a — (VydB)En(X) + (VxdB)En(Y
= (EAOL(Vym)(X) = (Vxn)(Y)} =0. (3.7)

From (2.4) and (2.7) we get
(Vxn)Y = (Vyn)X = a®((X,Y) - (Y, X)) = 2a0(X,Y). (338
Using (3.8) in (3.7) we have
9(Vy grad o, $X) — g(Vx grad a, ¢Y) + {(Vy¢)Xa — (Vx )Y a}
— (VydB)én(X) + (VxdB)En(Y) +2a(£8)2(X,Y) = 0. (3.9)

Let {e1,e2,£} be an orthonormal ¢-basis where ¢e; = —es and ¢es = e;.
Taking X =e; and Y = ey in (3.7), we find that

9(Ve, grada, e1) + g(Ve, grad a, e2) = 28(§) + 2a(£5). (3.10)
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On the other hand (2.8) yields g(grad o, ) = —2af, whence by covariant
differentiation we get, on account of (2.1)

9(Ve grad o, §) = 20(£8) — 25(€a). (3.11)
From (3.10) and (3.11) we get Aa = 0, where A is the Laplacian defined by

2
Aa = Zg(Vei grad o, e;).
i=0
Since M is compact, we get « is constant.
Now if a # 0, (2.8) implies § = 0. This implies M is a a-Sasakian manifold.
Conversely, if M is a a-Sasakian manifold, then from (3.1) it is easy to see
that P(X,Y)¢ = 0. Hence we can state the following:

Theorem 3.1. A 3-dimensional compact connected trans-Sasakian manifold is
&-projectively flat if and only if it is a a-Sasakian manifold.

4 3-dimensional ¢-projectively flat trans-Sasakian mani-
folds

Analogous to the definition of ¢-conformally flat contact metric manifold [5],
we define ¢-projectively flat trans-Sasakian manifold. In this connection we can
mention the work of Ozgur [22] who has studied ¢-projectively flat Lorentzian
Para-Sasakian manifolds.

Definition 4.1. A 3-dimensional trans-Sasakian manifold satisfying the condi-
tion

¢°P(¢X,0Y)0Z =0 (4.1)
is called ¢-projectively flat.

Let us assume that M is a 3-dimensional connected ¢-projectively flat trans-
Sasakian manifold. It can be easily seen that ¢2P(¢X, #Y )$Z = 0 holds if and
only if

9(P(¢X,0Y)pZ, W) =0,
for X, Y, Z, W eT(M).

Using (1.1) and (2.1), ¢-projectively flat means

9(R(6X,0Y)0Z, oW) = 5{S(¢Y, 0Z)g(¢X, oW) — S(6X,0Z)g(8Y, W)}
(4.2)
Let {e1,ea,&} be a local orthonormal basis of the vector fields in M. Using
the fact that {¢eq, peq, £} is also a local orthonormal basis, if we put X =W =
e; in (4.2) and summing up with respect to i, then we have

2

2
> 9(R(ges, oY)0Z, pe;) = % > AS(8Y, 02)g(des, dei)—S(des, $2)g(0Y, des)}.
1=1 1=1

(4.3)
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It can be easily verified that

2

> 9(R(ges, oY)dZ, pei) = S($Y, ¢2) + (68 — ® + B°)g(¢Y, ¢Z),  (4.4)

=1

D> _g(dei der) =2, (4.5)
> S(pei, $2)g(oY, de;) = (oY, 0 Z). (4.6)

i=1
So using (2.2), the equation (4.3) becomes
(5 +3(68 —a?+ ) {9(Y,2) —n(Y)n(2)} = 0
which gives r = —6(£8 — a? + 3%). So we state the following:

Proposition 4.1. The scalar curvature r of a 3-dimensional connected ¢-
projectively flat trans-Sasakian manifold is r = —6(£8 — o + 32).

Also if r = —6(£8 — a2 + B?), it follows from (2.10) that the manifold is an
Einstein manifold provided «, 8 = constant. Hence we can state the following;:

Proposition 4.2. A 3-dimensional connected ¢p-projectively flat trans-Sasakian
manifold is an Einstein manifold, provided o, 8 = constant.

It is known [27] that a 3-dimensional Einstein manifold is a manifold of
constant curvature. Also M is projectively flat if and only if it is of constant
curvature [26]. Now trivially, projectively flatness implies ¢-projectively flat.
Hence using Proposition 4.2 we can state the following:

Theorem 4.1. A 3-dimensional connected trans-Sasakian manifold is ¢-pro-

jectively flat if and only if it is an Einstein manifold, provided o, f = constant.

5 3-dimensional trans-Sasakian manifold satisfying
R(X,Y).P=0
Using (2.3), (2.12) in (1.1), we get
N(P(X,Y)Z) = (a® = B2)[g(Y, Z)n(X) — g(X, Z)n(Y)]
[S(Y, Z)n(X) = S(X, Z)n(Y), (5.1)

_ 1
2
provided ¢(grad o) = grad 8. Putting Z = ¢ in (5.1), we get

n(P(X,Y)§) = 0. (5.2)

Again taking X = ¢ in (5.1), we have

NPEY)Z) = (0 + 5)g(Y, Z) - 3S(Y, 2) (53)
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where (2.1) and (2.9) are used.
Now,
(RIX,Y)P)(U,V)Z =R(X,Y).P(UV)Z
— P(R(X,Y)U,V)Z — P(U,R(X,Y)V)Z — P(U,V)R(X,Y)Z.
As it has been considered R(X,Y).P = 0, so we have
R(X,Y).P(U,V)Z — P(R(X,Y)U,V)Z
~ P(U,R(X,Y)V)Z — P(U,V)R(X,Y)Z =0. (5.4)

Therefore,

9(R(&,Y).P(U,V)Z,§) — g(P(R(&Y)U,V)Z,)
- g(P(U’ R(§7 Y)V)Z7 5) - g<P(U7 V)R(§7 Y)Z7 f) =0. (55)
From this it follows that,

~ P(UV,2,Y) +0(Y)n(P(U,V)Z)
—nU)n(P(Y,V)Z) + g(Y,U)n(P(§, V) Z) = n(V)n(P(U,Y)Z)
+9(Y,V)n(P(U,§)Z) = n(Z)n(P(U,V)Y) =0, (5.6)
where —P(U,V, Z,Y) = g(P(U,V)Z,Y).
Putting Y = U in (5.6), we get
- P(U, V.Z, Y) + g(U, U)U(P(Ea V)Z) - U(V)H(P(Ua U)Z>
+9(U, V)n(PU,8)Z) = n(Z)n(P(U,V)U) = 0. (5.7)

Let {e1,eq,&} be a local orthonormal basis of the vector fields in M. If we
put U = ¢; in (5.7) and summing up with respect to 7, then we have

S(V,Z) =2(a” = B)g(V, Z) — [5 = 3(a® = )| n(V)n(Z), (5-8)

where (5.1) and (5.3) are used.
Taking Z = £ in (5.8) and using (2.9) we obtain

r=6(a® — 3?). (5.9)
Now using (5.1), (5.2), (5.8) and (5.9) in (5.6) we get
P(U,V,Z,U) =0. (5.10)
From (5.10) it follows that
P(U,V)Z = 0. (5.11)

Therefore, the trans-Sasakian manifold under consideration is projectively flat.
Conversely, if the manifold is projectively flat, then obviously R(X,Y).P = 0
holds. Hence we can state the next theorem:

Theorem 5.1. A 3-dimensional connected trans-Sasakian manifold is projec-
tively semisymmetric if and only if the manifold is projectively flat, provided
¢(grad o) = grad 3.
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6 Example of a 3-dimensional trans-Sasakian manifold

Example 6.1. [8] We consider the 3-dimensional manifold M = {(z,y,z) €
R3, 2 # 0}, where (z,y, 2) are standard co-ordinate of R3.
The vector fields

N R U ]
€1 =% y&'z , 62—Zay, 63_82

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

gle1,e3) (e1,e2) (e2,e3) =0,

=g =g
gler,er) = glea,ea) = g(es, e3) = 1.

Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1,1) tensor field defined by

d(e1) = ez, Ple2) = —e1, P(es) = 0.
Then using the linearity of ¢ and g, we have n(es) = 1,
$*Z = —Z+n(Z)es, g(¢Z, W) = g(Z, W) —n(Z)n(W),

for any Z, W € x(M), the set of all smooth vector fields on M.
Then for e3 = ¢, the structure (¢,&,7, g) defines an almost contact metric
structure on M.
Let V be the Levi-Civita connection with respect to metric g and R be the
curvature tensor of g. Then we have
1

[61762] =Yyez — 2263, [61763] = *;61, [62763] = *;62-

Taking e3 = £ and using Koszul formula for the Riemannian metric g, we
can easily calculate

1 1 1 1
v€163 = —;61 + 2_262’ vele2 = —52263, v6161 = ;631
1 1 2 1 1 5 )
v6263:*;62*52 €1, Ve, €2 :y€1+;€3, Ve, €1 = 5% €2 = 527es —yes,
1, 1,
Ve3€3 = 0, V€362 = —52’ €1, Ve:»,el = §Z €s.

From the above it can be easily seen that (¢,&,7,g) is a trans-Sasakian struc-
ture on M. Consequently M?3(4,€&,n,9) is a trans-Sasakian manifold with
az—%zQ#Oandﬁ:—%#O.

Example 6.2. We consider the 3-dimensional manifold M = {(x,y,z) € R3,
(7,y,2) # 0}, where (z,y, ) are standard co-ordinate of R3.
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The vector fields
0 0 0 0

= — — yy— e p— :27
9z You oy’ “s Ox

€1

are linearly independent at each point of M.
Let g be the Riemannian metric defined by
glei,e3) = gler,e2) = g(ea, e3) = 0,
=9 =g

gle1,er) (e2,e2) (e3,e3) = 1.

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1,1) tensor field defined by

dle1) = —ea, ¢Plex) =e1, ¢(ez) =0.

Then using the linearity of ¢ and g, we have n(e3) = 1,
$*Z = —Z+n(Z)es, g(¢Z, W) = g(Z,W) —n(Z)n(W),

for any Z, W € x(M).

Thus for e3 = &, the structure (¢,&,7,g) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to metric g. Then we have

e —ern e (2, 0\ 0 (0 0y o 1
rel=aemaa = 0z yax Oy Oy \ 0z yax _695_263'

Similarly [e;, e3] = 0 and [ez, e5] = 0.
Taking e3 = £ and using Koszul formula for the Riemannian metric g, we
can easily calculate

1 1
V€1e3 = 1627 v61€2 = —1637 velel — 0’
1 1
Vess = =761, Ve,€2 =0, Ve,e1 = e,
1
Vese?, = 0, v63€2 = —1617 Veg,@l = 162.

We see that the structure (¢, &, 7, g) satisfies the formula (2.6) for o = i and

B = 0. Hence the manifold is a trans-Sasakian manifold of type (i, 0).

Example 6.3. In [9] the authors cited an example of a 3-dimensional trans-
Sasakian manifold of type (0, —1). This is the classical example of the hyperbolic
3-space which is obviously of constant sectional curvature. Hence the manifold
is Einstein manifold and projectively flat. Hence the manifold is ¢-projectively
flat. Thus Theorem 4.1 is verified.
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