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Abstract

The object of the present paper is to study ξ-projectively flat and φ-
projectively flat 3-dimensional connected trans-Sasakian manifolds. Also
we study the geometric properties of connected trans-Sasakian manifolds
when it is projectively semi-symmetric. Finally, we give some examples
of a 3-dimensional trans-Sasakian manifold which verifies our result.
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1 Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost
contact metric structures by Chinea and Gonzales [6] and they appear as a
natural generalization of both Sasakian and Kenmotsu manifolds. Again in the
Gray–Hervella classification of almost Hermite manifolds [11], there appears a
classW4 of Hermitian manifolds which are closely related to locally conformally
Kähler manifolds. An almost contact metric structure on a manifoldM is called
a trans-Sasakian structure [21] if the product manifold M × R belongs to the
classW4. The class C6⊕C5 ([15, 16]) coincides with the class of trans-Sasakian
structures of type (α, β). In [16], the local nature of the two subclasses C5 and C6
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of trans-Sasakian structures is characterized completely. In [7], some curvature
identities and sectional curvatures for C5, C6 and trans-Sasakian manifolds are
obtained. It is known that [12] trans-Sasakian structures of type (0, 0), (0, β),
and (α, 0) are cosymplectic, β-Kenmotsu and α-Sasakian respectively where
α, β ∈ R.
The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has been

completely characterized by Marrero [15]. He proved that a trans-Sasakian man-
ifold of dimension n ≥ 5 is either cosymplectic or α-Sasakian or β-Kenmotsu
manifold. Hence proper trans-Sasakian manifold exists only for three dimen-
sion. In this context we can mention that some authors have studied (2n+ 1)-
dimensional trans-Sasakian manifolds, such as ([1, 13]) and many others. But
these results are not true for proper trans-Sasakian manifolds. Three-dimensional
trans-Sasakian manifolds have been studied by De and Tripathi [10], De and
Sarkar [9], De and De [8], Shukla and Singh [23] and many others. Sasakian
spaces were studied by [17, 19, 18].
The projective curvature tensor is an important tensor from the differential

geometric point of view. Let M be a n-dimensional Riemannian manifold. If
there exist an one-to-one correspondence between each coordinate neighborhood
ofM and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said
to be locally projectively flat. For n ≥ 3, M is locally projectively flat if and
only if the well known projective curvature tensor P vanishes. Here P is defined
by [20]

P (X,Y )Z = R(X,Y )Z − 1

n− 1
{S(Y, Z)X − S(X,Z)Y }, (1.1)

for X,Y, Z ∈ T (M), where R is the curvature tensor and S is the Ricci tensor.
In fact, M is projectively flat (that is, P = 0) if and only if the manifold is of
constant curvature [26, pp. 84–85]. Thus, the projective curvature tensor is a
measure of the failure of a Riemannian manifold to be of constant curvature.
A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([14, 18, 24, 25]) if R(X,Y ).R = 0, where R is the Riemannian curvature tensor
and R(X,Y ) is considered as a derivation of the tensor algebra at each point
of the manifold for tangent vectors X, Y . If a Riemannian manifold satisfies
R(X,Y ).P = 0, then the manifold is said to be projectively semi-symmetric
manifold. In [18, p. 286, p. 329] there is proved that projectively semi-symmetric
spaces are semi-symmetric.
The paper is organized as follows. In section 2, some preliminary results

are recalled. After preliminaries in section 3, we prove that a 3-dimensional
compact connected trans-Sasakian manifold is ξ-projectively flat if and only if
the manifold is α-Sasakian. In the next section, we prove that a 3-dimensional
connected trans-Sasakian manifold is φ-projectively flat if and only if it is an
Einstein manifold provided α, β = constant. In section 5, we prove that a 3-
dimensional connected trans-Sasakian manifold is projectively semisymmetric
if and only if the manifold is projectively flat, provided φ(gradα) = gradβ.
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Finally, we construct some examples of a 3-dimensional trans-Sasakian manifold
with constant function α, β on M .

2 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g), that is, φ is an (1,1) tensor field, ξ is a vector field,
η is a 1-form and g is a compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0 (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.2)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X) (2.3)

for all X and Y tangent to M ([2, 3]).
The fundamental 2-form of the manifold is defined by

Φ(X,Y ) = g(X,φY ) (2.4)

for all X and Y tangent to M .
An almost contact metric structure (φ, ξ, η, g) on a connected manifold M is

called a trans-Sasakian structure [21] if (M × R, J,G) belongs to the class W4

[11], where J is the almost complex structure on M × R defined by

J(X, f d
df ) = (φX − fξ, η(X) d

dt ),

for any vector fields X on M , f is a smooth function on M × R and G is the
product metric on M × R. This may be expressed by the condition [4]

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.5)

for smooth functions α and β on M . Hence we say that the trans-Sasakian
structure is of type (α, β). From (2.5) it follows that

∇Xφ = −α(φX) + β(X − η(X)ξ), (2.6)

(∇Xφ)Y = −αg(φX, Y ) + βg(φX, φY ). (2.7)

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [15]. In [10], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given. From
[10] we know that for a 3-dimensional trans-Sasakian manifold

2αβ + ξα = 0, (2.8)

S(X, ξ) = (2(α2 − β2)− ξβ)η(X)−Xβ − (φX)α, (2.9)

S(X,Y ) =
(
r
2 + ξβ − (α2 − β2)

)
g(X,Y )

− (
r
2 + ξβ − 3(α2 − β2)

)
η(X)η(Y )

− (Y β + (φY )α)η(X)− (Xβ + (φX)α)η(Y ), (2.10)
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R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y )

− η(Y )(Xβ)ξ + φ(X)αξ + η(X)(Y β)ξ + φ(Y )αξ

− (Y β)X + (Xβ)Y − (φ(Y )α)X + (φ(X)α)Y, (2.11)

and

R(X,Y )Z =
(
r
2 + 2ξβ − 2(α2 − β2)

)
(g(Y, Z)X − g(X,Z)Y

− g(Y, Z)
[ (

r
2 + ξβ − 3(α2 − β2)

)
η(X)ξ

− η(X)(φ gradα− gradβ) + (Xβ + (φX)α)ξ
]

+ g(X,Z)
[ (

r
2 + ξβ − 3(α2 − β2)

)
η(Y )ξ

− η(Y )(φ gradα− gradβ) + (Y β + (φY )α)ξ
]

− [
(Zβ + (φZ)α)η(Y ) + (Y β + (φY )α)η(Z)

+ r
2 + ξβ − 3(α2 − β2))η(Y )η(Z)

]
X

+
[
(Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z)

+ r
2 + ξβ − 3(α2 − β2))η(X)η(Z)

]
Y, (2.12)

where S is the Ricci tensor of type (0,2) and R is the curvature tensor of type
(1,3) and r is the scalar curvature of the manifold M .

3 3-dimensional ξ-projectively flat trans-Sasakian mani-
folds

ξ-conformally flat K-contact manifolds have been studied by Zhen, Cabrerizo
and Fernandez [28]. In this section we study ξ-projectively flat connected
transSasakian manifolds. Analogous to the definition of ξ-conformally flat K-
contact manifold we define ξ-projectively flat connected trans-Sasakian mani-
folds.

Definition 3.1. A connected trans-Sasakian manifoldM is called ξ-projectively
flat if the condition P (X,Y )ξ = 0 holds onM , where projective curvature tensor
P is defined by (1.1).

Putting Z = ξ in (1.1) and using (2.9) and (2.11), we get

P (X,Y )ξ = − 1
2{(Y β)X − (Xβ)Y }+ {(Y β)η(X)− (Xβ)η(Y )}ξ

+ (Y α)φX − (Xα)φY + 2αβ{η(Y )φX − η(X)φY }
+ 1

2 [(φY )αX − (φX)αY + (ξβ){η(Y )X − η(X)Y }]. (3.1)

Now assume that M is a 3-dimensional compact connected ξ-projectively
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flat trans-Sasakian manifold. Then from (3.1) we can write

− 1
2{(Y β)X − (Xβ)Y }+ {(Y β)η(X)− (Xβ)η(Y )}ξ

+ (Y α)φX − (Xα)φY + 2αβ{η(Y )φX − η(X)φY }
+ 1

2 [(φY )αX − (φX)αY + (ξβ)(η(Y )X − η(X)Y )}] = 0. (3.2)

Putting Y = ξ in the above equation and using (2.8), we obtain

(Xβ)ξ + (φX)αξ − (ξβ)η(X)ξ = 0

which implies
(Xβ) + (φX)α− (ξβ)η(X) = 0. (3.3)

The gradient of the function β is related to the exterior derivative dβ by the
formula

dβ(X) = g(gradβ,X). (3.4)

Using (3.4) in (3.3) we obtain

dβ(X) + g(gradα, φX)− dβ(ξ)η(X) = 0. (3.5)

Differentiating (3.5) covariantly along Y , we get

(∇Y dβ)(X) + g(∇Y gradα, φX) + g(gradα, (∇Y φ)X)

− (∇Y dβ)ξη(X)− (ξβ)(∇Y η)(X) = 0. (3.6)

Hence, by antisymmetrization with respect to X and Y , we have

g(∇Y gradα, φX)− g(∇X gradα, φY )

+ ((∇Y φ)X − (∇Xφ)Y )α− (∇Y dβ)ξη(X) + (∇Xdβ)ξη(Y )

− (ξβ){(∇Y η)(X)− (∇Xη)(Y )} = 0. (3.7)

From (2.4) and (2.7) we get

(∇Xη)Y − (∇Y η)X = αΦ((X,Y )− Φ(Y,X)) = 2αΦ(X,Y ). (3.8)

Using (3.8) in (3.7) we have

g(∇Y gradα, φX)− g(∇X gradα, φY ) + {(∇Y φ)Xα− (∇Xφ)Y α}
− (∇Y dβ)ξη(X) + (∇Xdβ)ξη(Y ) + 2α(ξβ)Φ(X,Y ) = 0. (3.9)

Let {e1, e2, ξ} be an orthonormal φ-basis where φe1 = −e2 and φe2 = e1.
Taking X = e1 and Y = e2 in (3.7), we find that

g(∇e1 gradα, e1) + g(∇e2 gradα, e2) = 2β(ξα) + 2α(ξβ). (3.10)
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On the other hand (2.8) yields g(gradα, ξ) = −2αβ, whence by covariant
differentiation we get, on account of (2.1)

g(∇ξ gradα, ξ) = 2α(ξβ)− 2β(ξα). (3.11)

From (3.10) and (3.11) we get Δα = 0, where Δ is the Laplacian defined by

Δα =
2∑

i=0

g(∇ei gradα, ei).

Since M is compact, we get α is constant.
Now if α �= 0, (2.8) implies β = 0. This implies M is a α-Sasakian manifold.
Conversely, if M is a α-Sasakian manifold, then from (3.1) it is easy to see

that P (X,Y )ξ = 0. Hence we can state the following:

Theorem 3.1. A 3-dimensional compact connected trans-Sasakian manifold is
ξ-projectively flat if and only if it is a α-Sasakian manifold.

4 3-dimensional φ-projectively flat trans-Sasakian mani-
folds

Analogous to the definition of φ-conformally flat contact metric manifold [5],
we define φ-projectively flat trans-Sasakian manifold. In this connection we can
mention the work of Ozgur [22] who has studied φ-projectively flat Lorentzian
Para-Sasakian manifolds.

Definition 4.1. A 3-dimensional trans-Sasakian manifold satisfying the condi-
tion

φ2P (φX, φY )φZ = 0 (4.1)

is called φ-projectively flat.

Let us assume thatM is a 3-dimensional connected φ-projectively flat trans-
Sasakian manifold. It can be easily seen that φ2P (φX, φY )φZ = 0 holds if and
only if

g(P (φX, φY )φZ, φW ) = 0,

for X, Y , Z, W ∈ T (M).
Using (1.1) and (2.1), φ-projectively flat means

g(R(φX, φY )φZ, φW ) = 1
2{S(φY, φZ)g(φX, φW )− S(φX, φZ)g(φY, φW )}.

(4.2)
Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M . Using

the fact that {φe1, φe2, ξ} is also a local orthonormal basis, if we put X =W =
ei in (4.2) and summing up with respect to i, then we have

2∑
i=1

g(R(φei, φY )φZ, φei) =
1

2

2∑
i=1

{S(φY, φZ)g(φei, φei)−S(φei, φZ)g(φY, φei)}.
(4.3)



Projective curvature tensor in 3-dimensional connected trans-Sasakian. . . 35

It can be easily verified that

2∑
i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ) + (ξβ − α2 + β2)g(φY, φZ), (4.4)

2∑
i=1

g(φei, φei) = 2, (4.5)

2∑
i=1

S(φei, φZ)g(φY, φei) = S(φY, φZ). (4.6)

So using (2.2), the equation (4.3) becomes(
r
2 + 3(ξβ − α2 + β2)

){g(Y, Z)− η(Y )η(Z)} = 0

which gives r = −6(ξβ − α2 + β2). So we state the following:

Proposition 4.1. The scalar curvature r of a 3-dimensional connected φ-
projectively flat trans-Sasakian manifold is r = −6(ξβ − α2 + β2).

Also if r = −6(ξβ − α2 + β2), it follows from (2.10) that the manifold is an
Einstein manifold provided α, β = constant. Hence we can state the following:

Proposition 4.2. A 3-dimensional connected φ-projectively flat trans-Sasakian
manifold is an Einstein manifold, provided α, β = constant.

It is known [27] that a 3-dimensional Einstein manifold is a manifold of
constant curvature. Also M is projectively flat if and only if it is of constant
curvature [26]. Now trivially, projectively flatness implies φ-projectively flat.
Hence using Proposition 4.2 we can state the following:

Theorem 4.1. A 3-dimensional connected trans-Sasakian manifold is φ-pro-
jectively flat if and only if it is an Einstein manifold, provided α, β = constant.

5 3-dimensional trans-Sasakian manifold satisfying
R(X,Y ).P = 0

Using (2.3), (2.12) in (1.1), we get

η(P (X,Y )Z) = (α2 − β2)[g(Y, Z)η(X)− g(X,Z)η(Y )]

− 1
2 [S(Y, Z)η(X)− S(X,Z)η(Y ), (5.1)

provided φ(gradα) = gradβ. Putting Z = ξ in (5.1), we get

η(P (X,Y )ξ) = 0. (5.2)

Again taking X = ξ in (5.1), we have

η(P (ξ, Y )Z) = (α2 + β2)g(Y, Z)− 1

2
S(Y, Z), (5.3)
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where (2.1) and (2.9) are used.
Now,

(R(X,Y )P )(U, V )Z = R(X,Y ).P (U, V )Z

− P (R(X,Y )U, V )Z − P (U,R(X,Y )V )Z − P (U, V )R(X,Y )Z.

As it has been considered R(X,Y ).P = 0, so we have

R(X,Y ).P (U, V )Z − P (R(X,Y )U, V )Z

− P (U,R(X,Y )V )Z − P (U, V )R(X,Y )Z = 0. (5.4)

Therefore,

g(R(ξ, Y ).P (U, V )Z, ξ)− g(P (R(ξ, Y )U, V )Z, )

− g(P (U,R(ξ, Y )V )Z, ξ)− g(P (U, V )R(ξ, Y )Z, ξ) = 0. (5.5)

From this it follows that,

− P̃ (U, V, Z, Y ) + η(Y )η(P (U, V )Z)

− η(U)η(P (Y, V )Z) + g(Y, U)η(P (ξ, V )Z)− η(V )η(P (U, Y )Z)

+ g(Y, V )η(P (U, ξ)Z)− η(Z)η(P (U, V )Y ) = 0, (5.6)

where −P̃ (U, V, Z, Y ) = g(P (U, V )Z, Y ).
Putting Y = U in (5.6), we get

− P̃ (U, V, Z, Y ) + g(U,U)η(P (ξ, V )Z)− η(V )η(P (U,U)Z)

+ g(U, V )η(P (U, ξ)Z)− η(Z)η(P (U, V )U) = 0. (5.7)

Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M . If we
put U = ei in (5.7) and summing up with respect to i, then we have

S(V, Z) = 2(α2 − β2)g(V, Z)− [
1
2 − 3(α2 − β2)

]
η(V )η(Z), (5.8)

where (5.1) and (5.3) are used.
Taking Z = ξ in (5.8) and using (2.9) we obtain

r = 6(α2 − β2). (5.9)

Now using (5.1), (5.2), (5.8) and (5.9) in (5.6) we get

P̃ (U, V, Z, U) = 0. (5.10)

From (5.10) it follows that
P (U, V )Z = 0. (5.11)

Therefore, the trans-Sasakian manifold under consideration is projectively flat.
Conversely, if the manifold is projectively flat, then obviously R(X,Y ).P = 0
holds. Hence we can state the next theorem:

Theorem 5.1. A 3-dimensional connected trans-Sasakian manifold is projec-
tively semisymmetric if and only if the manifold is projectively flat, provided
φ(gradα) = gradβ.
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6 Example of a 3-dimensional trans-Sasakian manifold

Example 6.1. [8] We consider the 3-dimensional manifold M = {(x, y, z) ∈
R

3, z �= 0}, where (x, y, z) are standard co-ordinate of R3.
The vector fields

e1 = z

(
∂

∂x
+ y

∂

∂z

)
, e2 = z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M .
Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Let φ be the (1,1) tensor field defined by

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.

Then using the linearity of φ and g, we have η(e3) = 1,

φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M), the set of all smooth vector fields on M .
Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g and R be the

curvature tensor of g. Then we have

[e1, e2] = ye2 − z2e3, [e1, e3] = −1

z
e1, [e2, e3] = −1

z
e2.

Taking e3 = ξ and using Koszul formula for the Riemannian metric g, we
can easily calculate

∇e1e3 = −1

z
e1 +

1

z2
e2, ∇e1e2 = −1

2
z2e3, ∇e1e1 =

1

z
e3,

∇e2e3 = −1

z
e2 − 1

2
z2e1, ∇e2e2 = ye1 +

1

z
e3, ∇e2e1 =

1

2
z2e2 − 1

2
z2e3 − ye2,

∇e3e3 = 0, ∇e3e2 = −1

2
z2e1, ∇e3e1 =

1

2
z2e2.

From the above it can be easily seen that (φ, ξ, η, g) is a trans-Sasakian struc-
ture on M . Consequently M3(φ, ξ, η, g) is a trans-Sasakian manifold with
α = − 1

2z
2 �= 0 and β = − 1

z �= 0.

Example 6.2. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3,

(x, y, z) �= 0}, where (x, y, z) are standard co-ordinate of R3.
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The vector fields

e1 =
∂

∂z
− y

∂

∂x
, e2 =

∂

∂y
, e3 = 2

∂

∂x

are linearly independent at each point of M .
Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Let φ be the (1,1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have η(e3) = 1,

φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M).
Thus for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

[e1, e2] = e1e2 − e2e1 =

(
∂

∂z
− y

∂

∂x

)
∂

∂y
− ∂

∂y

(
∂

∂z
− y

∂

∂x

)
=

∂

∂x
=

1

2
e3.

Similarly [e1, e3] = 0 and [e2, e3] = 0.
Taking e3 = ξ and using Koszul formula for the Riemannian metric g, we

can easily calculate

∇e1e3 =
1

4
e2, ∇e1e2 = −1

4
e3, ∇e1e1 = 0,

∇e2e3 = −1

4
e1, ∇e2e2 = 0, ∇e2e1 =

1

4
e2,

∇e3e3 = 0, ∇e3e2 = −1

4
e1, ∇e3e1 =

1

4
e2.

We see that the structure (φ, ξ, η, g) satisfies the formula (2.6) for α = 1
4 and

β = 0. Hence the manifold is a trans-Sasakian manifold of type ( 14 , 0).

Example 6.3. In [9] the authors cited an example of a 3-dimensional trans-
Sasakian manifold of type (0,−1). This is the classical example of the hyperbolic
3-space which is obviously of constant sectional curvature. Hence the manifold
is Einstein manifold and projectively flat. Hence the manifold is φ-projectively
flat. Thus Theorem 4.1 is verified.
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