Algebraic Connections and Curvature in Fibrations Bundles of Associative Algebras

Igor M. BURLAKOV

Tver State University, Zheljabova 33, Tver, 170100, Russian Federation e-mail: don.burlakoff@yandex.ru

(Received September 28, 2016)

Abstract

In this article fibrations of associative algebras on smooth manifolds are investigated. Sections of these fibrations are spinor, co spinor and vector fields with respect to a gauge group. Invariant differentiations are constructed and curvature and torsion of invariant differentiations are calculated.

Key words: Algebraic fibration, spinor, co spinor, vector field, field of connection, invariant differentiation, curvature, torsion.

2010 Mathematics Subject Classification: 57R15, 15A66

Fibrations of linear algebras are a specification of vector fibrations on smooth manifolds where the standard fiber is a linear algebra. Such specification allows for a smooth manifold to introduce some connection which is compatible with the algebraic structure of a standard fiber.

Let us consider an arbitrary associative unitary algebra \mathbf{A} , dim $\mathbf{A} = n$, with basis space \mathbf{T}_m , dim $\mathbf{T}_m = m$. Let \mathbf{M} be a differentiable manifold, dim $\mathbf{M} = m$. Denote by $\mathbf{T}_m(\boldsymbol{x})$ the tangent space in a point $\boldsymbol{x} \in \mathbf{M}$ and by $\mathbf{A}(\boldsymbol{x})$ the algebra with basis space $\mathbf{T}_m(\boldsymbol{x})$. By this we for the manifold \mathbf{M} obtain a vector fiber bundle $\mathbf{A}\mathbf{M}$, the standard fiber of which is a linear space of algebra \mathbf{A} (see [1]).

However, **AM** is not only a vector space, because in every fiber $\mathbf{A}(\mathbf{x})$ we may define not only linear operations but also a product of vectors. Therefore it is useful to introduce for fiber bundle **AM** a special denomination *algebraic fibration* (see [2]). Herewith the module $\mathbf{A}(\mathbf{M})$ of smooth sections of algebraic fibration is an infinite algebra, the restriction of which to a point $\mathbf{x} \in \mathbf{M}$ coincides with algebra $\mathbf{A}(\mathbf{x})$. This algebra will be called a *gauge algebra* of fibration **AM** (analogously to modules of gauge field in time-space manifolds, see [3]). Elements of this algebra, i.e. sections of fibration, will be called *algebraic (gauge) fields* on manifold \mathbf{M} .

Herewith the algebra $\mathbf{A}(\mathbf{M})$ is unitary because an algebra \mathbf{A} is unitary. Therefore the module $\mathbf{F}(\mathbf{M})$ of smooth functions on a manifold \mathbf{M} is a subalgebra of the algebra $\mathbf{A}(\mathbf{M})$.

Now, let us denote by $\Re(\mathbf{A}(\mathbf{M}))$ a multiplicative group of all algebraic fields and call it by a regular group of the algebra $\mathbf{A}(\mathbf{M})$.

Let $\Phi \in \mathbf{F}(\mathbf{M})$ be an arbitrary multiplicative function. This function defines a subgroup $\mathbf{G}_{\Phi}(\mathbf{M}) \subset \Re(\mathbf{A}(\mathbf{M}))$, elements of which $\boldsymbol{\alpha} = \boldsymbol{\alpha}(\boldsymbol{x})$ fulfils the identity $\Phi(\boldsymbol{\alpha}) = 1$. By this way, in a fibration $\mathbf{A}\mathbf{M}$ we obtain a geometric structure, gauge motions of which are given by linear algebraic functions. Fields $\boldsymbol{\xi} = \boldsymbol{\xi}(\boldsymbol{x}) \in \mathbf{A}(\mathbf{M})$ which for an action of a gauge group $\mathbf{G}_{\Phi}(\mathbf{M})$ satisfy

$$\boldsymbol{\psi}_L(\boldsymbol{\xi}(\boldsymbol{x})) = \boldsymbol{\alpha}(\boldsymbol{x}) \cdot \boldsymbol{\xi}(\boldsymbol{x}), \tag{1}$$

for any $\alpha(\mathbf{x}) \in \mathbf{G}_{\Phi}(\mathbf{M})$, are called *G*-spinor fields (analogously to spinor field in time-space manifolds, see [4]).

Fields $\eta = \eta(x) \in \mathbf{A}(\mathbf{M})$ which for an action of a gauge group $\mathbf{G}_{\Phi}(\mathbf{M})$ satisfy

$$\boldsymbol{\psi}_{R}(\boldsymbol{\eta}(\boldsymbol{x})) = \boldsymbol{\eta}(\boldsymbol{x}) \cdot \boldsymbol{\alpha}^{-1}(\boldsymbol{x}), \qquad (2)$$

are called *G*-co spinor fields (by the same physical analogy).

Finally, fields $\zeta = \zeta(x) \in \mathbf{A}(\mathbf{M})$ which for an action of a group $\mathbf{G}_{\Phi}(\mathbf{M})$ satisfy

$$\psi(\boldsymbol{\zeta}(\boldsymbol{x})) = \boldsymbol{\alpha}(\boldsymbol{x}) \cdot \boldsymbol{\zeta}(\boldsymbol{x}) \cdot \boldsymbol{\alpha}^{-1}(\boldsymbol{x}), \tag{3}$$

are called *G*-vector fields.

Let us consider some differentiation of fields $\boldsymbol{\xi} \in \mathbf{A}(\mathbf{M})$, i.e. a linear operator $\partial : \mathbf{A}(\mathbf{M}) \to \mathbf{A}(\mathbf{M})$ which satisfies the Leibnitz identity:

$$\partial(\boldsymbol{\xi} \cdot \boldsymbol{\eta}) = \partial(\boldsymbol{\xi}) \cdot \boldsymbol{\eta} + \boldsymbol{\xi} \cdot \partial(\boldsymbol{\eta}), \tag{4}$$

for any fields $\boldsymbol{\xi} = \boldsymbol{\xi}(\boldsymbol{x}), \boldsymbol{\eta} = \boldsymbol{\eta}(\boldsymbol{x}) \in \mathbf{A}(\mathbf{M})$. According to the Leibnitz identity the operator of differentiation is not invariant with respect to gauge action, generally. It means that the identities $\partial(\psi_L(\boldsymbol{\xi}) = \psi_L(\partial(\boldsymbol{\xi})), \partial(\psi_R(\boldsymbol{\xi}) = \psi_R(\partial(\boldsymbol{\xi}))),$ and $\partial(\psi(\boldsymbol{\xi}) = \psi(\partial(\boldsymbol{\xi})))$ are not satisfied for it. However, for any differentiation we may construct some new operators which will be invariant with respect to the action of the group $\mathbf{G}_{\mathbf{\Phi}}(\mathbf{M})$ on *G*-spinor, *G*-co spinor and *G*-vector fields.

For this purpose, we will in every point $x \in \mathbf{M}$ consider an arbitrary set of differentiations $\partial_V = \partial_V(x)$. Denote by $\mathbf{D}(x)$ the linear space which is generated by such set and construct a fibration \mathbf{DAM} , fibers of which are Cartesian products $\mathbf{D}(x) \times \mathbf{A}(x)$. Sections of this fibration $\boldsymbol{\Gamma}\{\partial\}$, where $\partial(x) \in$ $\mathbf{D}(x)$, which for an action of a gauge group $\mathbf{G}_{\Phi}(\mathbf{M})$ satisfy

$$\boldsymbol{\psi}_{C}(\boldsymbol{\Gamma}\{\partial\}) = \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma}\{\partial\} \cdot \boldsymbol{\alpha}^{-1} - \partial(\boldsymbol{\alpha}) \cdot \boldsymbol{\alpha}^{-1},$$
(5)

are called G-connection and the set of them will be denoted by $\delta \mathbf{A}(\mathbf{M})$.

It is clear to see that if $a, b \in \mathbf{R}$, a + b = 1, then for any connections $\Gamma_1\{\partial\}, \Gamma_2\{\partial\} \in \delta \mathbf{A}(\mathbf{M})$ a field $a\Gamma_1\{\partial\} + b\Gamma_2\{\partial\}$ is also a connection.

If fields of connection are given we may construct a differential operator invariant with respect to the (gauge) motion. Especially, for any $\delta(\boldsymbol{x}) \in \mathbf{D}(\boldsymbol{x})$ we have the following theorem.

Theorem 1 (invariance theorem). Let $\boldsymbol{\xi} = \boldsymbol{\xi}(\boldsymbol{x})$, $\boldsymbol{\eta} = \boldsymbol{\eta}(\boldsymbol{x})$ and $\boldsymbol{\zeta} = \boldsymbol{\zeta}(\boldsymbol{x})$ be arbitrary G-spinor, G-co spinor, and G-vector fields. The operators defined by the following formulas

$$\nabla_L\{\partial\}\boldsymbol{\xi} = \partial\boldsymbol{\xi} + \boldsymbol{\Gamma}\{\partial\} \cdot \boldsymbol{\xi},\tag{6}$$

$$\nabla_R\{\partial\}\boldsymbol{\eta} = \partial\boldsymbol{\eta} - \boldsymbol{\eta} \cdot \boldsymbol{\Gamma}\{\partial\},\tag{7}$$

$$\hat{\nabla}\{\partial\}\boldsymbol{\zeta} = \partial\boldsymbol{\zeta} + \boldsymbol{\Gamma}_1\{\partial\} \cdot \boldsymbol{\zeta} - \boldsymbol{\zeta} \cdot \boldsymbol{\Gamma}_2\{\partial\}.$$
(8)

are invariant with respect to motions of the group $\mathbf{G}_{\Phi}(\mathbf{M})$.

In fact, if $\psi_L(\boldsymbol{\xi}) = \boldsymbol{\alpha} \cdot \boldsymbol{\xi}$ then we may write:

$$\nabla_L\{\partial\}(\psi_L(\boldsymbol{\xi})) = \partial(\psi_L(\boldsymbol{\xi})) + \psi_C(\boldsymbol{\Gamma}\{\partial\}) \cdot \psi_L(\boldsymbol{\xi})$$

= $(\partial \boldsymbol{\alpha}) \cdot \boldsymbol{\xi} + \boldsymbol{\alpha} \cdot (\partial \boldsymbol{\xi}) + (\boldsymbol{\alpha} \cdot \boldsymbol{\Gamma}\{\partial\} \cdot \boldsymbol{\alpha}^{-1}) \cdot (\boldsymbol{\alpha} \cdot \boldsymbol{\xi}) - (\partial \boldsymbol{\alpha}) \cdot \boldsymbol{\alpha}^{-1}) \cdot (\boldsymbol{\alpha} \cdot \boldsymbol{\xi})$
= $\boldsymbol{\alpha} \cdot (\partial \boldsymbol{\xi}) + \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma}\{\partial\} \cdot \boldsymbol{\xi} = \boldsymbol{\alpha} \cdot (\nabla_L\{\partial\}\boldsymbol{\xi}) = \psi_L(\nabla_L\{\partial\}\boldsymbol{\xi}).$

The invariance of operators $\nabla_R{\{\partial\}}$ and $\tilde{\nabla}{\{\partial\}}$ may by proved analogously.

Operators are called *operators of invariant G-spinor*, *G-co spinor*, and *G-vector differentiation*, respectively.

In this case, if connections $\Gamma_1\{\partial\}$ and $\Gamma_2\{\partial\}$ of operator $\tilde{\nabla}\{\partial\}$ are identical, the operator of invariant *G*-vector differentiation is called symmetric and we denote it by

$$\nabla\{\partial\}\boldsymbol{\xi} = \partial\boldsymbol{\zeta} + \boldsymbol{\Gamma}\{\partial\} \cdot \boldsymbol{\zeta} - \boldsymbol{\zeta} \cdot \boldsymbol{\Gamma}\{\partial\} = \partial\boldsymbol{\zeta} + [\boldsymbol{\Gamma}\{\partial\}, \boldsymbol{\zeta}].$$

Let us remark that an action of an arbitrary operator of *G*-vector invariant differentiation $\tilde{\nabla}\{\partial\}\boldsymbol{\zeta}$ may be represented as an action of symmetric *G*-vector operator with a sum of anti-commutator of a given *G*-vector field $\boldsymbol{\xi}$ and another *G*-vector field. For this purpose we for the operator (8) introduce a *G*-connection $\boldsymbol{\Gamma}\{\partial\} = (\boldsymbol{\Gamma}_1\{\partial\} + \boldsymbol{\Gamma}_2\{\partial\})/2$ and we remark, that a difference $\boldsymbol{S}\{\partial\} = (\boldsymbol{\Gamma}_1\{\partial\} - \boldsymbol{\Gamma}_2\{\partial\})/2$ is a *G*-vector field (it will be called *G*-torsion of a couple of *G*-connection $\boldsymbol{\Gamma}_1\{\partial\}$ and $\boldsymbol{\Gamma}_2\{\partial\}$). Now we may write

$$egin{aligned} &
abla \{\partial\} \boldsymbol{\zeta} = \partial \boldsymbol{\zeta} + \boldsymbol{\Gamma}_1\{\partial\} \cdot \boldsymbol{\zeta} - \boldsymbol{\zeta} \cdot \boldsymbol{\Gamma}_2\{\partial\} \ &= \partial \boldsymbol{\zeta} + \boldsymbol{\Gamma}_1\{\partial\} \cdot \boldsymbol{\zeta} - \boldsymbol{\zeta} \cdot \boldsymbol{\Gamma}\{\partial\} + \boldsymbol{S}\{\partial\} \cdot \boldsymbol{\zeta} + \boldsymbol{\zeta} \cdot \boldsymbol{S}\{\partial\} \ &= \partial \boldsymbol{\zeta} + [\boldsymbol{\Gamma}\{\partial\}, \boldsymbol{\zeta}] + \langle \boldsymbol{S}\{\partial\}, \boldsymbol{\zeta}
angle =
abla \boldsymbol{\zeta} + [\boldsymbol{\Gamma}\{\partial\}, \boldsymbol{\zeta}] + \langle \boldsymbol{S}\{\partial\}, \boldsymbol{\zeta}
angle =
abla \boldsymbol{\zeta} + \langle \boldsymbol{S}\{\partial\}, \boldsymbol{\zeta}
angle. \end{aligned}$$

For operators $\nabla_L{\{\partial\}}$, $\nabla_R{\{\partial\}}$ and $\nabla{\{\partial\}}$ the following theorems holds.

Theorem 2 (on curvature). Let differentiations $\partial_1(\boldsymbol{x}), \partial_2(\boldsymbol{x}) \in \mathbf{D}(\boldsymbol{x})$ be given. Then commutators of invariant *G*-differentiations $\nabla_L\{\partial\}, \nabla_R\{\partial\}, \nabla\{\partial\}$ are reduced to linear functions coefficients of which are some *G*-vector fields $\mathbf{K}\{\partial_1, \partial_2\}$ depending on *G*-connections $\boldsymbol{\Gamma}\{\partial_1\}, \boldsymbol{\Gamma}\{\partial_2\}, \boldsymbol{\Gamma}\{[\partial_2, \partial_1]\}.$ In fact, if $\nabla_L \{\partial\} \boldsymbol{\xi} = \partial \boldsymbol{\xi} + \boldsymbol{\Gamma} \{\partial\} \cdot \boldsymbol{\xi}$ then we obtain

$$\nabla_{L} \{\partial_{2}\} \nabla_{L} \{\partial_{1}\} \boldsymbol{\xi} = \partial_{2} \partial_{1} \boldsymbol{\xi} + \partial_{2} \boldsymbol{\Gamma} \{\partial_{1}\} \cdot \boldsymbol{\xi} + \boldsymbol{\Gamma} \{\partial_{1}\} \cdot \partial_{2} \boldsymbol{\xi} \\ + \boldsymbol{\Gamma} \{\partial_{2}\} \cdot \partial_{1} \boldsymbol{\xi} + \boldsymbol{\Gamma} \{\partial_{2}\} \cdot \boldsymbol{\Gamma} \{\partial_{1}\} \cdot \boldsymbol{\xi}, \\ \nabla_{L} \{\partial_{1}\} \nabla_{L} \{\partial_{2}\} \boldsymbol{\xi} = \partial_{1} \partial_{2} \boldsymbol{\xi} + \partial_{1} \boldsymbol{\Gamma} \{\partial_{2}\} \cdot \boldsymbol{\xi} + \boldsymbol{\Gamma} \{\partial_{2}\} \cdot \partial_{1} \boldsymbol{\xi} \\ + \boldsymbol{\Gamma} \{\partial_{1}\} \cdot \partial_{2} \boldsymbol{\xi} + \boldsymbol{\Gamma} \{\partial_{1}\} \cdot \boldsymbol{\Gamma} \{\partial_{2}\} \cdot \boldsymbol{\xi}, \\ \nabla_{L} \{[\partial_{2}, \partial_{1}]\} \boldsymbol{\xi} = \partial_{2} \partial_{1} \boldsymbol{\xi} - \partial_{1} \partial_{2} \boldsymbol{\xi} + \boldsymbol{\Gamma} \{[\partial_{2}, \partial_{1}]\} \cdot \boldsymbol{\xi}.$$

Therefore

$$(\nabla_L \{\partial_2\} \nabla_L \{\partial_1\} - \nabla_L \{\partial_1\} \nabla_L \{\partial_2\} - \nabla_L \{[\partial_2, \partial_1]\}) \boldsymbol{\xi} = \mathbf{K} \{\partial_1, \partial_2\} \cdot \boldsymbol{\xi},$$

where

$$\mathbf{K}\{\partial_1,\partial_2\} = \partial_2 \boldsymbol{\Gamma}\{\partial_1\} - \partial_1 \boldsymbol{\Gamma}\{\partial_2\} + \boldsymbol{\Gamma}\{\partial_2\} \cdot \boldsymbol{\Gamma}\{\partial_1\} - \boldsymbol{\Gamma}\{\partial_1\} \cdot \boldsymbol{\Gamma}\{\partial_2\} - \boldsymbol{\Gamma}\{[\partial_2,\partial_1]\}.$$

By na analogical way, we may prove

$$(\nabla_L \{\partial_2\} \nabla_L \{\partial_1\} - \nabla_L \{\partial_1\} \nabla_L \{\partial_2\} - \nabla_L \{[\partial_2, \partial_1]\}) \boldsymbol{\xi} = \mathbf{K} \{\partial_1, \partial_2\} \cdot \boldsymbol{\xi},$$

where

$$\mathbf{K}\{\partial_1,\partial_2\} = \partial_2 \boldsymbol{\Gamma}\{\partial_1\} - \partial_1 \boldsymbol{\Gamma}\{\partial_2\} + \boldsymbol{\Gamma}\{\partial_2\} \cdot \boldsymbol{\Gamma}\{\partial_1\} - \boldsymbol{\Gamma}\{\partial_1\} \cdot \boldsymbol{\Gamma}\{\partial_2\} - \boldsymbol{\Gamma}\{[\partial_2,\partial_1]\}.$$

By na analogical way, we may prove

$$(\nabla_R\{\partial_2\}\nabla_R\{\partial_1\}-\nabla_R\{\partial_1\}\nabla_R\{\partial_2\}-\nabla_R\{[\partial_2,\partial_1]\})\boldsymbol{\eta}=-\boldsymbol{\eta}\cdot\mathbf{K}\{\partial_1,\partial_2\},$$

and

$$(\nabla\{\partial_2\}\nabla\{\partial_1\} - \nabla\{\partial_1\}\nabla\{\partial_2\} - \nabla\{[\partial_2,\partial_1]\})\boldsymbol{\zeta} = \mathbf{K}\{\partial_1,\partial_2\} \cdot \boldsymbol{\zeta} - \boldsymbol{\zeta} \cdot \mathbf{K}\{\partial_1,\partial_2\}.$$

It remains to prove, that $\mathbf{K}\{\partial_1,\partial_2\}$ is a *G*-vector field:

 $\partial_{2}\psi_{C}(\Gamma\{\partial_{1}\}) - \partial_{1}\psi_{C}(\Gamma\{\partial_{2}\}) + \psi_{C}(\Gamma\{\partial_{2}\}) \cdot \psi_{C}(\Gamma\{\partial_{1}\})$

$$\begin{split} & (\partial_2 \varphi_C (\boldsymbol{\Gamma} \{0_1\}) - \partial_1 \varphi_C (\boldsymbol{\Gamma} \{0_2\}) + \varphi_C (\boldsymbol{\Gamma} \{0_2\}) - \varphi_C (\boldsymbol{\Gamma} \{0_1\}) \\ & - \psi_C (\boldsymbol{\Gamma} \{\partial_1\}) \cdot \psi_C (\boldsymbol{\Gamma} \{\partial_2\}) - \psi_C (\boldsymbol{\Gamma} \{[\partial_2, \partial_1]\}) \\ & = (\partial_2 \boldsymbol{\alpha}) \cdot \boldsymbol{\Gamma} \{\partial_1\} \cdot \boldsymbol{\alpha}^{-1} + \boldsymbol{\alpha} \cdot (\partial_2 \boldsymbol{\Gamma} \{\partial_1\}) \cdot (\partial_2 \boldsymbol{\alpha}^{-1}) - (\partial_2 \partial_1 \boldsymbol{\alpha}) \cdot \boldsymbol{\alpha}^{-1} - (\partial_1 \boldsymbol{\alpha}) \cdot (\partial_2 \boldsymbol{\alpha}^{-1}) \\ & - (\partial_1 \boldsymbol{\alpha}) \cdot \boldsymbol{\Gamma} \{\partial_2\} \cdot \boldsymbol{\alpha}^{-1} - \boldsymbol{\alpha} \cdot (\partial_1 \boldsymbol{\Gamma} \{\partial_2\}) \cdot \boldsymbol{\alpha}^{-1} - \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma} \{\partial_2\} \cdot (\partial_1 \boldsymbol{\alpha}^{-1}) \\ & + \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma} \{\partial_2\} \cdot \boldsymbol{\Gamma} \{\partial_1\} \cdot \boldsymbol{\alpha}^{-1} + \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma} \{\partial_1\} \cdot (\partial_2 \boldsymbol{\alpha}^{-1}) + (\partial_1 \boldsymbol{\alpha}) \cdot \boldsymbol{\Gamma} \{\partial_2\} \cdot \boldsymbol{\alpha}^{-1} \\ & + (\partial_1 \boldsymbol{\alpha}) \cdot (\partial_2 \boldsymbol{\alpha}^{-1}) - \boldsymbol{\alpha} \cdot \boldsymbol{\Gamma} \{[\partial_2, \partial_1]\} \cdot \boldsymbol{\alpha}^{-1} + (\partial_2 \partial_1 \boldsymbol{\alpha}) \cdot \boldsymbol{\alpha}^{-1} \\ & = \boldsymbol{\alpha} \cdot (\partial_2 \boldsymbol{\Gamma} \{\partial_1\} - \partial_1 \boldsymbol{\Gamma} \{\partial_2\} + \boldsymbol{\Gamma} \{\partial_2\} \cdot \boldsymbol{\Gamma} \{\partial_1\} - \boldsymbol{\Gamma} \{\partial_1\} \cdot \boldsymbol{\Gamma} \{\partial_2\} - \boldsymbol{\Gamma} \{[\partial_2, \partial_1]\}) \cdot \boldsymbol{\alpha}^{-1}. \end{split}$$

In conclusion, if on a manifold **M** Riemannian metric is defined and if as an algebraic fibration over such manifold the fibration of Clifford algebras is given, then Spin(**M**) is such gauge group actions of which on vector and spinor fields preserve Riemannian metric. In this case *G*-connection for differential operators $\partial = \xi^k \partial / \partial x^k$ will be a Riemannian connection and *G*-vector field $\mathbf{K}\{\partial_1, \partial_2\}$ will be a tensor field of Riemannian curvature (see [5]).

References

- Dubrovin, B. A., Novikov, S. P., Fomenko, A. T.: Modern geometry (Sovremennaya geometriya). Bull. Amer. Math. Soc. (N.S.) 13, 1 (1985), 62–65, (Nauka, Moscow, 1978, in Russian).
- [2] Burlakov, I. M.: Geometric Structures in Bundles of Associative Algebras. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 31–38.
- [3] Konopleva, N. P., Popov, V. N.: Kalibrovochnye polya. *Atomizdat*, Moscow, 1972, (in Russian).
- [4] Lomsadze, Yu. M.: Teoretiko-gruppovoe vvedenie v teoriyu elementarnykh chastits. Vysshaia shkola, Moscow, 1962, (in Russian).
- [5] Burlakov, M. P., Evtushik, L. E.: Clifford's structure and Clifford's differentiation on Riemann spaces. Bull. Moscow Univ. – Math., Mech. 1, 2 (1994), 67–74, (in Russian).