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Abstract

In this paper, criteria are established for uniform stability, uniform
ultimate boundedness and existence of periodic solutions for third order
nonlinear ordinary differential equations. In the investigation Lyapunov’s
second method is used by constructing a complete Lyapunov function to
obtain our results. The results obtained in this investigation complement
and extend many existing results in the literature.
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1 Introduction

In order to describe and understand natural occurrence (or processes), we search
for pattern of occurrences of these natural processes. Patterns that repeat are
particularly useful and of interest, because we can predict their future behaviour.
We meet with periodicity when something is repeated in time and in space. The
sun rises everyday, the rotation of the planets, changes of seasons, high and low
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tides, predator and pre-population, data with periodic influences are examples
of cyclic or periodic patterns. Ancient astronomers and astrologers used these
observations to regulate the activities of individuals, communities, nations or
countries. Researches in mathematical, physical, biological and social sciences
about these processes requires information about the existence and nonexis-
tence, stability and instability, boundedness and unboundedness of solutions of
the derived related models or systems.
Many works have been done by notable authors on the stability and bound-

edness of solutions of nonlinear ordinary differential equations, see for instance
LaSalle and Lefschets [28], Reissig et. al [31], Rouche et. al [32], Yoshizawa
[42, 43] which contain general results on the subject matters, and the papers of
Ademola et. al [1]–[10], Afuwape and Adesina [11], Andres [12], Antoisewicz [13],
Bereketoǧlu and Györi [15], Chukwu [17], Ezeilo [18, 19, 20], Hara [21], Mehri
and Shadman [23] Ogundare [29], Omeike [30], Swick [34], Tejumola [35, 36],
Tunç [38, 40] and the references cited therein.
Up to now, according to our investigation in the relevant literatures, the

problem of existence of periodic solutions for various nonlinear second and third
order ordinary differential equations have been discussed in the literature by
few authors; see for example, the paper of Ezeilo [18], Mehri et. al [22, 24, 26],
Minhós [27], Shadman and Mehri [33] and Tunç et. al [37, 39]. These works
were done using topological degree theory or the Leray–Schauder principle. The
purpose of this paper is to establish criteria for existence of periodic, uniform
stability, and uniform ultimate boundedness of solutions for the third order
nonlinear ordinary differential equations

. . .
x + λφ(t)g1(x, ẋ, ẍ, σ) = p(t, x, ẋ, ẍ) (1.1)

where g1 are functions sufficiently smooth with respect to their arguments, φ
and p are ω periodic functions and λ > 0 is a constant. Let x(t, σ), as in [22],
be a solution of (1.1), where σ is a parameter. If σ = 0 and we assume further
that

g1(x, ẋ, ẍ, 0) = f(x, ẋ, ẍ)ẍ+ g(x, ẋ) + h(x),

then equation (1.1) becomes
. . .
x + λφ(t)[f(x, ẋ, ẍ)ẍ+ g(x, ẋ) + h(x)] = p(t, x, ẋ, ẍ). (1.2)

Setting ẋ = y and ẍ = z Eq. (1.2) becomes

ẋ = y, ẏ = z, ż = p(t, x, y, z)− λφ(t)[f(x, y, z)z + g(x, y) + h(x)] (1.3)

where p ∈ C(R+ × R3,R), f ∈ C(R3,R), g ∈ C(R2,R), h ∈ C(R,R),
φ ∈ C(R+,R), R+ = [0,∞) and R = (−∞,∞). The derivatives fx(x, y, z),
fz(x, y, z), gx(x, y), h′(x) and φ′(t) exist and continuous for all t, x, y, z with
h(0) = 0. The dots, as usual, stand for differentiation with respect to the in-
dependent variable t. Motivation for this work come from the works of Mehri
and Niksirat [22], Minhós [27] and Tunç [39] where results on periodicity were
proved. According to our observation from the relevant literature, this paper
is one of the few articles on the existence of periodic solutions for third order
nonlinear differential equations where a complete Laypunov function is used.
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2 Preliminaries

Consider a system of differential equations

dX

dt
= F (t,X) (2.1)

where X is an n-vector. Suppose that F (t,X) is continuous in (t,X) on R+×D
where D is a connected open set in Rn. Let C be a class of solutions of (2.1)
which remain in D and let X0 be an element of C. We have the following results:

Lemma 2.1 [42] Suppose that there exists a Lyapunov function V (t,X) defined
on R+, ‖X‖ < H which satisfies the following conditions:

(i) V (t, 0) ≡ 0;

(ii) a(‖X‖) ≤ V (t,X) ≤ b(‖X‖), a, b are continuous and increasing;
(iii) V(2.1)(t,X) ≤ −c(‖X‖) for all (t,X) ∈ R+ ×D.

Then the trivial solution X(t) ≡ 0 of (2.1) is uniformly asymptotically stable.

Lemma 2.2 [41, 42] Suppose that there exists a Lyapunov function V (t,X)
defined on R+, ‖X‖ ≥ R, where R may be large, which satisfies the following
conditions:

(i) a(‖X‖) ≤ V (t,X) ≤ b(‖X‖), where a(r) and b(r) are continuous and
increasing and a(r) → ∞ as r → ∞;

(ii) V ′
(2.1)(t,X) ≤ −c(‖X‖), where c(r) is positive and continuous,

then the solution of (2.1) are uniformly ultimately bounded.

Lemma 2.3 [41, 42] If there exists a Lyapunov function satisfying the condition
of Lemma 2.2, then (2.1) has at least a periodic solution of period ω.

3 Main Results

Assumptions In addition to the basic conditions on the functions f, g, h, p
and φ, suppose that a, b, c, a1, b1, δ, μ0, μ1 and ε0 are positive constants and that
for all t ≥ 0;

(i) μ0 ≤ φ(t) ≤ μ1, maxt∈R+ |φ′(t)| ≤ ε0;

(ii) a ≤ f(x, y, z) ≤ a1 for all x, y, z and yfx(x, y, 0) ≤ 0 for all x, y;

(iii) b ≤ g(x,y)
y ≤ b1 for all x, y 	= 0 and gx(x, y) ≤ 0 for all x, y;

(iv) h(0) = 0, h(x)x ≥ δ for all x 	= 0;

(v) h′(x) ≤ c for all x and ab− c > 0;
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(vi) |p(t, x, y, z)| ≤ ϕ(t) + ψ(t)(|x| + |y| + |z|) where ϕ and ψ are periodic
functions of t satisfying

ϕ(t) ≤M (3.1a)

0 < M <∞ and there exists ε1 > 0 such that

0 ≤ ψ(t) ≤ ε1 (3.1b)

When p(t, x, y, z) ≡ 0 (1.3) comes to be

ẋ = y, ẏ = z, ż = −λφ(t)[f(x, y, z)z + g(x, y) + h(x)] (3.2)

where f, g and h are the functions defined in Section 1. We have the following
results.

Theorem 3.1 If assumptions (i)–(v) hold true, then the trivial solutions of
(3.2) is uniformly asymptotically stable.

Theorem 3.2 If assumptions (i)–(vi) hold, then the solution of (x(t), y(t),
z(t)) of (1.3) is uniformly ultimately bounded.

Theorem 3.3 If the assumptions of Theorem 3.2 hold, then (1.3) has a periodic
solution of period ω.

Corollary 3.4 If assumptions (i)–(v) hold and (vi) is replaced by p(t) p ∈
C(R+,R) periodic in t of period ω, and bounded above by a finite constant,

(i) then the solution (x(t), y(t), z(t)) of (1.3) is uniformly ultimately bounded.

(ii) If Corollary 3.4 (i) holds good, then (1.3) has a periodic solution of pe-
riod ω.

Remark 3.5

(i) Whenever λφ(t)f(x, y, z) = a, λφ(t)g(x, y) = g(y), λφ(t)h(x) = cx and
p(t, x, y, z) = p(t), equation (1.3) reduces to the case discussed by Minhós
in [27].

(ii) If λφ(t)f(x, y, z) = c2(t) and λφ(t)g(x, y) = c1(t)y, (1.3) specializes to
that studied by Tunç in [39].

(iii) In the case λφ(t)f(x, y, z) = ψ(y), λφ(t)g(x, y) = k2 + φ(x), p(t, x, y, z) =
e(t), system (1.3) reduces to that discussed by Mehri and Shadman in
[24, 25].

(iv) If p(t, x, y, z) = 0 equation (1.1) specializes to (3.1) discussed in [22].
Also, if λφ(t)f(x, y, z) = f(y)h(z) and g(x, y) = 0 = h(x), equation (1.3)
specializes to (3.3) discussed also in [22].

(v) In [22, 25, 26, 39] Leray–Schauder approach was used by these authors
to establish existence of periodic solutions to the third order ordinary
differential equations considered. In this paper Lyapunov’s second method
is used, by constructing a complete Lyapunov function, to obtain criteria
for existence of periodic solutions. Thus, our assumptions are completely
different.
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The main tool used in this investigation is the continuously differentiable
function

2V = 2[α1 + aλφ(t)]λφ(t)

∫ x

0

h(ξ)dξ + 4λφ(t)yh(x) + 2aα2λφ(t)xy

+ 4λφ(t)

∫ y

0

g(x, τ )dτ + 2[α1 + aλφ(t)]λφ(t)

∫ y

0

τf(x, τ, 0)dτ + 2z2

+ α2y
2 + α2bλφ(t)x

2 + 2α2xz + 2[α1 + aλφ(t)]yz (3.3)

where α1 and α2 are positive constants satisfying

c < α1b < abλμ0 (3.4a)

and

α2 < min

{
bλμ0, λμ0(abλμ0 − c)A0,

1

2
(aλμ0 − α1)A1

}
(3.4b)

where

A0 =

[
1 + aλμ0 + λμ0δ

−1

(
g(x, y)

y
− b

)2]−1

and

A1 =
[
1 + λμ0δ

−1
(
f(x, y, z)− a

)2]−1

.

Remark 3.6 The differentiable function V = V (t, x, y, z) = V (t, x(t), y(t), z(t))
defined in (3.3) is similar to the one used in [7].

Lemma 3.7 Subject to assumptions (i)–(v), V (t, 0, 0, 0) = 0; and there ex-
ist positive constants D0 = D0(a, b, c, α1, α2, δ, λ, μ0) and D1 = D1(a, b, c, α1,
α2, a1, b1, λ, μ1) such that

D0(x
2(t) + y2(t) + z2(t)) ≤ V (t, x, y, z) ≤ D1(x

2(t) + y2(t) + z2(t)), (3.5a)

V (t, x, y, z) → +∞ as x2(t) + y2(t) + z2(t) → ∞, (3.5b)

also, there exist positive constants D2 = D2(a, b, c, α1, α2, δ, ε0, λ, μ0) and D3 =
D3(a, α1, α2, λ, μ0) such that along any solution (x(t), y(t), z(t)) of (1.3)

V̇ =
d

dt
V (t, x, y, z) ≤−D2(x

2(t)+ y2(t)+ z2(t))+D3(|x|+ |y|+ |z|)|p(t, x, y, z)|.
(3.5c)
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Proof Obviously, V (t, 0, 0, 0) = 0 for all t ∈ R+. Since h(0) = 0 the function
V defined in (3.3) can be rearranged in the form

V = b−1λφ(t)

∫ x

0

[
α1b− h′(ξ) + abλφ(t)− h′(ξ)

]
h(ξ)dξ + α2y

2

+
1

2

(
α1y + z

)2
+ bλφ(t)

(
y + b−1h(x)

)2
+

1

2

(
α2x+ aλφ(t)y + z

)2
+ 2λφ(t)

∫ y

0

(
g(x, τ )

τ
− b

)
τdτ

+

∫ y

0

{
α1

[
λφ(t)f(x, τ, 0)− α1

]
+ aλ2φ2(t)[f(x, τ, 0)− a]

}
τ dτ

+
α2

2

(
bλφ(t)− α2

)
x2

Now, since φ(t) ≥ μ0 for all t ≥ 0, f(x, y, z) ≥ a for all x, y, z, g(x, y) ≥ by for
all x and y 	= 0, h(x) ≥ δx for all x 	= 0, and h′(x) ≤ c for all x, we have

V ≥ 1

2

[
b−1δλμ0(α1b− c+ abλμ0 − c) + α2(bλμ0 − α2)

]
x2

+ b−1λμ0

(
δx+ by

)2 1
2

[
α1(aλμ0 − α1) + 2α2

]
y2

+
1

2

(
α1y + z

)2
+

1

2

(
α2x+ aλμ0y + z

)2
.

From (3.4a), (3.4b), α1b > c, abλμ0 > c, aλμ0 > α1 and bλμ0 > α2, hence,
there exist positive constants δ0,K0,K1,K2 such that

V ≥ δ0(x
2 + y2 + z2) (3.6)

for all t ∈ R+ and (x, y, z) ∈ R3, where δ0 = min{K0,K1,K2},

K0 =
λμ0

b
min{δ, b}+ δλμ0

2b
(α1b− c+ abλμ0 − c) + α2(bλμ0 − α2)

+
1

2
min{α1, aλμ0, 1},

K1 =
α1

2
(aλμ0 −α1)+α2 +

1

2
min{α1, 1}+ λμ0

b
min{δ, b}+ 1

2
min{α1, aλμ0, 1}

and

K2 =
1

2
[min{α1, 1}+min{α1, aλμ0, 1}].

Furthermore, since φ(t) ≤ μ1, 0 ≤ t < ∞, f(x, y, z) ≤ a1 for all x, y and z,
g(x, y) ≤ b1 for all x and y 	= 0, h′(x) ≤ c for all x, and the fact that h(0) = 0,
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(3.3) becomes

V ≤ 1

2

[
(α1 + aλμ1)cλμ1 + α2bλμ1

]
x2

+

[
1

2
a1λμ1(α1 + aλμ1) +

1

2
α2 + b1λμ1

]
y2 + z2

+ 2(cλμ1 +
1

2
aα2λμ1)xy + α2xz + (α1 + aλμ1)yz.

Recall that 2mn ≤ m2+n2, hence, there exist positive constants δ1,K3,K4 and
K5 such that

V ≤ δ1(x
2 + y2 + z2) (3.7)

for all t ∈ R+ and (x, y, z) ∈ R3, where δ1 = max{K3,K4,K5}, K3 = 1
2 [α2((a+

b)λμ1 + 1) + cλμ1(α1 + aλμ1 + 2)], K4 = 1
2 [α1 + α2 + [a1(α1 + aλμ1) + 2b1 +

a(1 + α2) + 2c]λμ1] and K5 = 1
2 (α1 + α2 + aλμ1).

Moreover, by estimate (3.6), we have V (t, 0, 0, 0) = 0 if and only if x2+y2+z2 =
0, V (t, x, y, z) > 0 if and only if x2 + y2 + z2 	= 0, it follows that

V (t, x, y, z) → +∞ as x2 + y2 + z2 → ∞. (3.8)

Hence, from (3.6), (3.7) and (3.8) estimates (3.5a) and (3.5b) are satisfied with
δ0 ≡ D0 and δ1 ≡ D1 in (3.6) and (3.7) respectively.
Besides, along any solution (x(t), y(t), z(t)) of (1.3)

V̇(1.3) = aα2λφ(t)y
2 + 2α2yz + [α2x+ (α1 + aλφ(t))y + 2z]p(t, x, y, z)

+

2∑
i=1

Wi −
4∑
i=3

Wi − α2λφ(t)

[
g(x, y)

y
− b

]
xy − α2λφ(t)

[
f(x, y, z)− a

]
xz

(3.9)

where

W1 = λφ′(t)
[
(α1 + 2aλφ(t))

∫ x

0

h(ξ) dξ + 2

∫ y

0

g(x, τ ) dτ + 2yh(x)

+ (α1 + 2aλφ(t))

∫ y

0

τf(x, τ, 0) dτ +
1

2
(bα2x

2 + 2aα2xy + 2ayz)

]
;

W2 = λφ(t)

[
2y

∫ y

0

gx(x, τ )dτ + (α1 + aλφ(t))y

∫ y

0

τfx(x, τ, 0) dτ

]
;

W3 = α2λφ(t)xh(x) + λφ(t)[(α1 + aλφ(t))yg(x, y)− 2y2h′(x)]

+ [2λφ(t)f(x, y, z)− (α1 + aλφ(t))]z2;

W4 = (α1 + aλφ(t))λφ(t)yz[f(x, y, z)− f(x, y, 0)].

Now, for all t ∈ R+ φ(t) ≤ μ1, h(0) = 0, h′(x) ≤ c for all x, g(x, y) ≤ b1y for
all x and y 	= 0 and f(x, y, z) ≤ a1 for all x, y, z, it follows that

W1 ≤ K7φ
′(t)(x2 + y2 + z2)
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for all x, y, z where

K7 = max

{
λ

2
[(α1 + 2aλμ1 + 2)c+ α2b] + aα2,

λ

2
[a1(α1 + 2aλμ1) + 2(b1 + c)] + a(α2 + 1), a

}
.

It is clear from conditions (ii) and (iii) that yfx(x, y, 0) ≤ 0 for all x, y and
gx(x, y) ≤ 0 for all x and y, so that

W2 ≤ 0

for all x, y, z. Furthermore, h(x) ≥ δx for all x 	= 0, g(x, y) ≥ by for all x and
y 	= 0, h′(x) ≤ c for all x and f(x, y, z) ≥ a for all x, y, z, from these inequalities
we obtain

W3 ≥ α2λμ0δx
2 + λμ0(α1b− c+ abλμ0 − c)y2 + (aλμ0 − α1)z

2

for all x, y and z. Finally, since yfz(x, y, z) ≥ 0 for all x, y, z it follows that

W4 = (α1 + aλφ(t))λφ(t)yz2fz(x, y, θz) ≥ 0

0 ≤ θ ≤ 1 and (α1 + aλφ(t))λφ(t)yz2fz(x, y, θz) = 0 when z = 0. Combining
all estimates for Wi (i = 1, 2, 3, 4) into (3.9), we obtain

V̇(1.3) ≤ K8(|x|+ |y|+ |z|)|p(t, x, y, z)|+K7φ
′(t)(x2 + y2 + z2)− 1

2
α2λμ0δx

2

− [λμ0(α1b− c+ abλμ0 − c)− α2(aλμ0 + 1)]y2 − [aλμ0 − α1 − α2]z
2 −

6∑
i=5

Wi

(3.10)

where K8 = max{α2, α1+aλμ1, 2},W5 = 1
4α2λμ0δx

2+α2λμ0[g(x, y)−by]x and
W6 = 1

4α2λμ0δx
2 + α2λμ0[f(x, y, z) − a]xz. Since α2, λ, μ0 and δ are positive

constants it is not difficult to show that

W5 ≥ −α2δ
−1λμ0

[
g(x, y)

y
− b

]2
y2 and W6 ≥ −α2δ

−1λμ0

[
f(x, y, z)− a

]2
z2

for all x, y and z. Using estimates W5 and W6 in (3.10) and applying the
inequality in (3.4b), there exist positive constants K9, K10 such that

V̇(1.3) ≤ −K10(x
2 + y2 + z2) +K8(|x|+ |y|+ |z|)|p(t, x, y, z)| (3.11)

for all x, y, z where K10 = K9 − ε0 > 0 and K9 = min{ 1
2α2λμ0δ, λμ0(α1b − c),

1
2 (aλμ0 − α1)}. This completes the proof of Lemma 3.7. �

Proof of Theorem 3.1 Let (x(t), y(t), z(t)) be any solution of (3.2), By (3.3)
it is clear that V (t, 0, 0, 0) = 0 for all t ∈ R+ and in view of estimates (3.6),
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(3.7), (3.8) and (3.11) when p(t, x, y, z) = 0, all the hypotheses of Lemma 2.1
are satisfied, hence, by Lemma 2.1 the trivial solution of (3.2) is uniformly
asymptotically stable. This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2 Suppose that (x(t), y(t), z(t)) be any solution of (1.3).
From (3.11) and assumption (vi), we have

V̇(1.3) ≤ −K10(x
2+y2+z2)+31/2K8(x

2+y2+z2)1/2ϕ(t)+3K8(x
2+y2+z2)ψ(t)

for all t ∈ R+ and (x, y, z) ∈ R3. In view of the estimates (3.1a) and (3.1b),
there exist positive constants K11 and K12 such that

V̇(1.3) ≤ −K11(x
2 + y2 + z2) +K12(x

2 + y2 + z2)1/2

for all t ≥ 0, x, y, z, where K11 = K10− 3K8ε1 > 0 since ε1 is chosen sufficiently
small and K12 = 31/2K8M > 0. Now choose (x2 + y2 + z2)1/2 ≥ K13, there
exists a constant δ2 > 0 such that

V̇(1.3) ≤ −δ2(x2 + y2 + z2) (3.12)

for all x, y, z and t ≥ 0, where K13 = 2K−1
11 K12 > 0 may be large and for all t ≥

0, x, y, z, and δ2 = 1
2K11. Thus, by (3.6), (3.7), (3.8) and (3.12) all hypotheses

of Lemma 2.2 hold true. Hence, by Lemma 2.2, the solution (x(t), y(t), z(t)) of
(1.3) is uniformly ultimately bounded. �

Proof of Theorem 3.3 Let (x(t), y(t), z(t)) be any solution of (1.3). Since the
function V = V (t, x, y, z) defined in (3.3) satisfies the conditions of Theorem 3.2
so that the solutions of (3.3) are uniformly ultimately bounded and by Lemma
2.3 (1.2) and consequently (1.3) has at least a periodic solution of period ω. �

Example 3.8 Consider the third order ordinary differential equation

. . .
x +

1

4

(
1 +

1

2 + sin 4t

)[
4ẍ+

ẍ

3 + |xẋ|+ eu
+ 2ẋ+

ẋ

4 + |xẋ| + 3x+
x

1 + |x|
]

=

(
1 +

cos t

2 + sin 4t

)
+
(
1 + cos(t/2)

)
(|x|+ |ẋ|+ |ẍ|), (3.13)

where

u =
1

4 + |ẋẍ| .
Setting ẋ = y, ẍ = z, (3.13) becomes

ẋ = y, ẏ = z, ż =

(
1 +

cos t

2 + sin 4t

)
+
(
1 + cos(t/2)

)
(|x|+ |y|+ |z|)

− 1

4

(
1 +

1

2 + sin 4t

)[
4z +

z

3 + |xy|+ eu1
+ 2y +

y

4 + |xy| + 3x+
x

1 + |x|
]

(3.14)

where

u1 =
1

4 + |yz| .
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From (1.3) and (3.14), we have the following relations:

(i) λ = 1
4 > 0 as required from the basic condition,

(ii) φ(t) =

(
1 +

1

2 + sin 4t

)
= φ(t+ ω) for all t ∈ R+,

hence, φ is periodic in t with period ω (see Fig. 1). Also,

0 <
1

2 + sin 4t
≤ 1 for all t ∈ R+,

this implies that 1 ≤ φ(t) ≤ 2 for all t, where 1 = μ0 > 0 and 2 = μ1 > 0.
Moreover,

max
t∈R+

|φ′(t)| = 4 cos 4t

(2 + sin 4t)2
≤ 2 ∀t ∈ R+,

where 2 = ε0 > 0.

Fig. 1. Periodic function φ(t) for all t ∈ R+

(iii) f(x, y, z) = 4 +
1

3 + |xy|+ expu1
.

But

0 ≤ 1

3 + |xy|+ expu1
≤ 1 ∀x, y, z,

it follows that
4 ≤ f(x, y, z) ≤ 5 for all x, y, z

where 4 = a > 0 and 5 = a1 > 0.

Furthermore, for x > 0, we have

yfx(x, y, z) =
−y2

[3 + |xy|+ expu1]2
≤ 0 for all x, y, z.

Also, for z > 0, we have

yfz(x, y, z) =
y2 expu1

[4 + |yz|][3 + |xy|+ expu1]2
≥ 0 for all x, y, z.
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(iv) g(x, y) = 2y +
y

4 + |xy| .
But

0 <
1

4 + |xy| ≤ 1 for all x and y,

this implies that

2 ≤ g(x, y)

y
≤ 3 for all x and y 	= 0,

where 2 = b > 0 and 3 = b1 > 0.

For x > 0

gx(x, y) =
−y2

[4 + |xy|]2 ≤ 0 for all x, y

(v) h(x) = 3x+
x

1 + |x| ,

it is clear from this relation that h(0) = 0. Also, since

1

1 + |x| > 0 for all x,

if follows that
h(x)

x
≥ 3 for all x 	= 0

where 3 = δ > 0. Moreover, for x > 0,

h′(x) = 3 +
1

(1 + |x|)2 .

Noting that
1

(1 + |x|)2 ≤ 1 for all x,

it follows that
h′(x) ≤ 4 for all x

where 4 = c > 0, and ab > c implies that 2 > 1.

(vi) ϕ(t) = 1 +
cos t

2 + sin 4t
= ϕ(t+ ω), for all t ∈ R+

so that the function ϕ is periodic in t with period ω. See also, in Fig. 2.

Moreover,

−1 ≤ cos t

2 + sin 4t
≤ 1 for all t

this implies that
ϕ(t) ≤ 2 =M <∞ for all t.
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Fig. 2. The periodic function ϕ(t) for all t ∈ R+

(vii) Finally, ψ(t) = 1 + cos(t/2), a periodic function of t (see Fig. 3).

Fig. 3. The periodic function ψ(t) for all t ∈ R+

Since −1 ≤ cos(t/2) ≤ 1 for all t, it follows that 0 ≤ ψ(t) ≤ 2 for all t
where 2 = ε1 > 0

All the assumptions of Theorem 3.1, Theorem 3.2 and Theorem 3.3 are all
satisfied, thus by Theorem 3.1 the trivial solution of (3.14) (when p = 0) is
uniformly asymptotically stable, by Theorem 3.2 the solution (x(t), y(t), z(t))
of (3.14) is uniformly ultimately bounded and by Theorems 3.2 and 3.3, system
(3.14) has a periodic solution of period ω.
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