A Characterization of Almost Continuity and Weak Continuity

Chrisostomos PETALAS1, Theodoros VIDALIS2

Department of Mathematics
University of Ioannina, 451 10 Ioannina, Greece
e-mail: 1cpetalas@cc.uoi.gr
2tvidalis@cc.uoi.gr

(Received May 18, 2004)

Abstract

It is well known that a function f from a space X into a space Y is continuous if and only if, for every set K in X the image of the closure of K under f is a subset of the closure of the image of it.

In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets K of X.

Key words: Almost continuous function, weakly continuous function.

2000 Mathematics Subject Classification: 54C10

1 Introduction and notations

The term almost continuous function is defined in different ways by several authors [3, 4, 5, 7]. In this paper we adopt the following definition due to Singal and Singal [7].

Definition 1 A function $f : X \rightarrow Y$ is said to be almost continuous if for each point $x \in X$ and each open set V in Y containing $f(x)$, there exists an open set U in X containing x, such that $f(U) \subset V^d$.

The following definition of weak continuity is due to N. Levine [2].