A Result on Segmenting Jungck–Mann Iterates

MEMUDU OLAPOSI OLATINWO

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria
e-mail: polatinwo@oauife.edu.ng

(Received May 5, 2007)

Abstract

In this paper, following the concepts in [5, 7], we shall establish a convergence result in a uniformly convex Banach space using the Jungck–Mann iteration process introduced by Singh et al [13] and a certain general contractive condition. The authors of [13] established various stability results for a pair of nonself-mappings for both Jungck and Jungck–Mann iteration processes. Our result is a generalization and extension of that of [7] and its corollaries. It is also an improvement on the result of [7].

Key words: Jungck–Mann iteration process; uniformly convex Banach space.

2000 Mathematics Subject Classification: 47H06, 47H10

1 Introduction

Suppose that $A = (a_{nk})$ is an infinite, lower triangular, regular row-stochastic matrix, E a closed convex subset of a Banach space and T a continuous mapping of E into itself and $x_1 \in E$. Then, the general Mann iteration process $M(x_1, A, T)$ which was introduced in Mann [9] is defined by

$$v_n = \sum_{k=1}^{n} a_{nk} x_k, \quad x_{n+1} = Tv_n, \quad n = 1, 2, \ldots ,$$

(1)
If \(A \) is the identity matrix, then each sequence of \(M(x_1, A, T) \) becomes the sequence of Picard iterates of \(T \) at \(x_1 \). It was established in [9] that if either of the sequences \(\{x_n\} \) and \(\{v_n\} \) converges, then the other also converges to the same point, and their common limit is a fixed point of \(T \).

In [5, 7], it is said that the matrix \(A \) is segmenting for the Mann process if \(a_{n+1,k} = (1 - a_{n+1,n+1})a_{nk} \) for \(k \leq n \). In this case, \(v_{n+1} \) lies on the segment joining \(v_n \) and \(Tv_n\):

\[
v_{n+1} = (1 - d_n)v_n + d_nTv_n, \quad n = 1, 2, \ldots, \tag{2}
\]

where \(d_n = a_{n+1,n+1} \). A segmenting matrix is determined by its sequence of diagonal elements. Some authors including [3, 11, 12] have investigated the case \(d_n = \lambda \), \(0 < \lambda < 1 \), while Mann [9] approximated the fixed points of continuous functions on a closed interval of the real line using the segmenting matrix determined by \(d_n = \frac{1}{n} \) \(\forall n \). Dotson [6] considered the case when \(d_n \) is bounded away from 0 and 1. Groetsch [7] generalized the results of [3, 6, 9, 11, 12] in a uniformly convex Banach space by employing (2) and assuming that \(A \) is a segmenting matrix for which \(\sum_{n=1}^{\infty} d_n(1 - d_n) = \infty \).

We shall give another definition of a segmenting matrix in the next section with a view to generalizing and extending Groetsch [7] and others mentioned earlier in this paper.

2 Preliminaries

Singh et al [13] introduced the following iteration process: Let \((E, \|\cdot\|)\) be a normed linear space, \(S, T: Y \to E\) and \(T(Y) \subseteq S(Y)\). Then, for \(x_0 \in Y\), consider the iteration process:

\[
Sx_{n+1} = (1 - \alpha_n)Sx_n + \alpha_nTx_n, \quad n = 0, 1, 2, \ldots, \tag{3}
\]

where \(\{\alpha_n\}_{n=0}^{\infty}\) satisfies

(i) \(\alpha_0 = 1\),

(ii) \(0 \leq \alpha_n \leq 1\) for \(n > 0\),

(iii) \(\sum \alpha_n = \infty\), and

(iv) \(\sum_{j=0}^{n} \alpha_j \Pi_{i=j+1}^{n} (1 - \alpha_i + a\alpha_i)\) converges.

The iteration process (3) is called the Jungck–Mann iteration.

For \(Y = E, S = I\) (identity operator) in (3) with \(\{\alpha_n\}_{n=0}^{\infty}\) satisfying (i)–(iv), then we have the Mann iteration process introduced by Mann [9]. Also, if in (3), \(Y = E, S = I\) (identity operator) and \(\alpha_n = 1\), then we obtain the Jungck iteration introduced by Jungck [8].

Following (3), we shall generalize and extend Groetsch [7] and others mentioned earlier in this paper by assuming that \(A\) is a segmenting matrix for which

\[
Sv_{n+1} = (1 - d_n)Sv_n + d_nTv_n, \quad n = 1, 2, \ldots, \tag{*}
\]
such that $\sum_{n=1}^\infty d_n(1 - d_n) = \infty$ and $S,T: C \to C$ are selfmappings on a nonempty convex subset C of a uniformly convex Banach space E. The operators S and T are assumed to have a common fixed point and satisfy in addition the contractive condition

$$\|Tx - Ty\| \leq \|Sx - Sy\|, \quad \forall x, y \in C. \quad (**)$$

If $S = I$ (identity operator) in (\star), then we obtain (2) and if $S = I$ in $(**)$ then we have $\|Tx - Ty\| \leq \|x - y\|, \forall x, y \in C$ (that is, T becomes a nonexpansive mapping).

We shall establish our main result in the next section. However, the following lemma is required in the sequel.

Lemma 2.1 (Groetsch [7]) Let X be a uniformly convex Banach space and let $x, y \in X$. If $\|x\| \leq 1$, $\|y\| \leq 1$ and $\|x - y\| \geq \epsilon > 0$, then

$$\|\lambda x + (1 - \lambda)y\| \leq 1 - 2\lambda(1 - \lambda)\delta(\epsilon)$$

for $0 \leq \lambda < 1$ and $\delta(\epsilon) > 0$.

The proof of this Lemma is contained in [4, 7].

3 The Main Result

Theorem 3.1 Let C be a convex subset of a uniformly convex Banach space E and $S,T: C \to C$ selfmappings satisfying condition $(**)$ and $T(C) \subseteq S(C)$. Suppose that S and T have at least a common fixed point. Let $\{Sv_n\}_{n=1}^\infty$ be the sequence defined by (\star). Then, the sequence $\{(S - T)v_n\}_{n=1}^\infty$ converges strongly to 0 for each $x_1 \in C$ such that $\sum_{n=1}^\infty d_n(1 - d_n) = \infty$.

Proof If p is a common fixed point of S and T (i.e. $Sp = Tp = p$), then

\[
\|Sv_{n+1} - p\| = \|(1 - d_n)Sv_n + d_nTv_n - (1 - d_n + d_n)p\|
\leq (1 - d_n)\|Sv_n - p\| + d_n\|Tv_n - p\|
\leq (1 - d_n)\|Sv_n - p\| + d_n\|Sp - Sv_n - Sp\|
= (1 - d_n)\|Sv_n - p\| + d_n\|Sv_n - p\|
\leq \|Sv_n - p\| \leq \|Sv_{n-1} - p\| \leq \cdots \leq \|Sv_1 - p\|,
\]

from which we have that the sequence $\{Sv_n - p\}_{n=1}^\infty$ is decreasing.

Now,

\[
\|(S - T)v_n\| = \|Sv_n - Tv_n\| \leq \|Sv_n - p\| + \|p - Tv_n\|
= \|Sv_n - p\| + \|Tp - Tv_n\| \leq \|Sv_n - p\| + \|Sp - Sv_n\| = 2\|Sv_n - p\|.
\]
Suppose on the contrary that \(\{(S - T)v_n\}_{n=1}^\infty\) does not converge to 0. Since \(\|Sv_n - Tv_n\| \leq 2\|Sv_n - p\|\), we may assume that there is an \(a > 0\), \(a \in (0, 1)\) such that \(\|Sv_n - p\| \geq a\) for any \(n\). If \(\{(S - T)v_n\}_{n=1}^\infty\) does not converge to 0, then there is an \(\epsilon > 0\) such that \(\|Sv_n - Tv_n\| \geq \epsilon\) for any \(n\).

Let
\[
 b = 2\delta \left(\frac{\epsilon}{\|Sv_1 - p\|} \right), \quad x_n = \frac{Sv_n - p}{\|Sv_n - p\|} \quad \text{and} \quad y_n = \frac{Tv_n - p}{\|Sv_n - p\|}.
\]

Then, we have
\[
 \|x_n\| = \left\| \left(\frac{Sv_n - p}{\|Sv_n - p\|} \right) \right\| \leq \frac{\|Sv_n - p\|}{\|Sv_n - p\|} = 1
\]
and
\[
 \|y_n\| = \left\| \left(\frac{Tv_n - p}{\|Sv_n - p\|} \right) \right\| \leq \frac{\|Tv_n - Tp\|}{\|Sv_n - p\|} \leq \frac{\|Sv_n - Sp\|}{\|Sv_n - p\|} = \frac{\|Sv_n - p\|}{\|Sv_n - p\|} = 1.
\]

Hence, we have by (*) that
\[
 \|Sv_{n+1} - p\| = \|(1 - d_n)Sv_n + d_nTv_n - (1 - d_n + d_n)p\|
 = \|(1 - d_n)(Sv_n - p) + d_n(Tv_n - p)\|
 = \left\| \left(\|Sv_n - p\| \right) \left(1 - d_n \right) \frac{(Sv_n - p)}{\|Sv_n - p\|} + d_n \frac{(Tv_n - p)}{\|Sv_n - p\|} \right\|
 \leq \|Sv_n - p\| (1 - d_n) \|x_n + d_n y_n\|
 \leq \|Sv_n - p\| (1 - d_n) \|x_n + d_n y_n\|.
\]

Using (4) and Lemma 2.1 in (5) yield
\[
 \|Sv_{n+1} - p\| \leq \|Sv_1 - p\| = \|Sv_{n+1} - p\| \leq \|Sv_1 - p\|
 \leq 1 - d_n (1 - d_n) b \|Sv_n - p\|
 = \|Sv_n - p\| - bd_n (1 - d_n) \|Sv_n - p\|
 \leq \|Sv_{n-1} - p\| - bd_{n-1} (1 - d_{n-1}) \|Sv_{n-1} - p\| - bd_n (1 - d_n) \|Sv_n - p\|
 \leq \|Sv_{n-1} - p\| - bd_{n-1} (1 - d_{n-1}) \|Sv_{n-1} - p\| - bd_n (1 - d_n) \|Sv_n - p\|
 = \|Sv_{n-1} - p\| - b [d_{n-1} (1 - d_{n-1}) + d_n (1 - d_n)] \|Sv_n - p\|.
\]

Repeating this process inductively leads to
\[
 a \leq \|Sv_{n+1} - p\| \leq \|Sv_1 - p\|
 - b \left[d_1 (1 - d_1) \|Sv_1 - p\| + d_2 (1 - d_2) \|Sv_1 - p\| + \cdots + d_n (1 - d_n) \|Sv_n - p\| \right]
 = \|Sv_1 - p\| - b \sum_{j=1}^n d_j (1 - d_j) \|Sv_1 - p\| \leq \|Sv_1 - p\| - ab \sum_{j=1}^n d_j (1 - d_j).
\]
Therefore, we obtain
\[
a \left[1 + b \sum_{j=1}^{n} d_j (1 - d_j) \right] \leq \|Sv_1 - p\|,
\]
from which it follows that
\[
a \leq \frac{\|Sv_1 - p\|}{1 + b \sum_{j=1}^{n} d_j (1 - d_j)} \to 0 \quad \text{as } n \to \infty,
\]
leading to a contradiction. Therefore, we have \(a = 0\). Hence,
\[
\lim_{n \to \infty} \|Sv_n - Tv_n\| = 0.
\]

Remark 3.1 Theorem 3.1 is also a generalization of the results of [3, 6, 7, 9, 11, 12].

References

