On Structure Space of Γ-Semigroups

S. CHATTOPADHYAY1, S. KAR2

Department of Pure Mathematics, University of Calcutta
35, Ballygunge Circular Road, Kolkata-700019, India

1e-mail: chatterjees04@yahoo.co.in
2e-mail: karsukhendu@yahoo.co.in

(Received August 20, 2007)

Abstract

In this paper we introduce the notion of the structure space of Γ-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.

Key words: Γ-semigroup; uniformly strongly prime ideal; Noetherian Γ-semigroup, hull-kernel topology, structure space.

2000 Mathematics Subject Classification: 20M17

1 Introduction

In [4], L. Gillman studied “Rings with Hausdorff structure space” and in [7], C. W. Kohls studied “The space of prime ideals of a ring”. In [1], M. R. Adhikari and M. K. Das studied ‘Structure spaces of semirings’.

In [9], M. K. Sen and N. K. Saha introduced the notion of Γ-Semigroup. Some works on Γ-Semigroups may be found in [10], [8], [5], [6], [2] and [3].

In this paper we introduce and study the structure space of Γ-Semigroups. For this we consider the collection \mathcal{A} of all proper uniformly strongly prime ideals of a Γ-Semigroup S and we give a topology $\tau_\mathcal{A}$ on \mathcal{A} by means of closure operator defined in terms of intersection and inclusion relation among these ideals of the Γ-Semigroup S. We call the topological space $(\mathcal{A}, \tau_\mathcal{A})$—the structure space of the Γ-Semigroup S. We study separation axioms, compactness and connectedness in this structure space.
2 Preliminaries

Definition 2.1 Let $S = \{a, b, c, \ldots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \ldots\}$ be two nonempty sets. S is called a Γ-semigroup if

(i) $a a b \in S$, for all $a \in \Gamma$ and $a, b \in S$ and
(ii) $(a a b) \beta c = a a (b \beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

S is said to be Γ-semigroup with zero if there exists an element $0 \in S$ such that $0 a a = a a 0 = 0$ for all $\alpha \in \Gamma$.

Example 2.2 Let S be a set of all negative rational numbers. Obviously S is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime}\}$.

Definition 2.3 Let S be a Γ-semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α-idempotent if $e a e = e$. The set of all α-idempotents is denoted by E_α and we denote $\bigcup_{\alpha \in \Gamma} E_\alpha$ by $E(S)$. The elements of $E(S)$ are called idempotent element of S.

Definition 2.4 A nonempty subset I of a Γ-semigroup S is called an ideal if $\Pi S \subseteq I$ and $STI \subseteq I$ where for subsets U, V of S and Δ of Γ, $U \Delta V = \{u a v : u \in U, v \in V, \alpha \in \Delta\}$.

Definition 2.5 A nonempty subset I of a Γ-semigroup S is called an ideal if $\Pi S \subseteq I$ and $STI \subseteq I$ where for subsets U, V of S and Δ of Γ, $U \Delta V = \{u a v : u \in U, v \in V, \alpha \in \Delta\}$. An ideal I of S is called a proper ideal if $I \neq S$.

Definition 2.6 A proper ideal P of a Γ-Semigroup S is called a prime ideal of S if $A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ for any two ideals A, B of S.

Definition 2.7 An ideal I of a Γ-semigroup S is said to be full if $E(S) \subseteq I$.

An ideal I of a Γ-semigroup S is said to be a prime full ideal if it is both prime and full.

Theorem 2.8 Let S be a Γ-semigroup. For an ideal P of S, the following are equivalent.

(i) If A and B are ideals of S such that $A \Gamma B \subseteq P$ then either $A \subseteq P$ or $B \subseteq P$.
(ii) If $a \Gamma ST b \subseteq P$ then either $a \in P$ or $b \in P(a, b \in S)$
(iii) If I_1 and I_2 are two right ideals of S such that $I_1 \Gamma I_2 \subseteq P$ then either $I_1 \subseteq P$ or $I_2 \subseteq P$.
(iv) If J_1 and J_2 are two left ideals of S such that $J_1 \Gamma J_2 \subseteq P$ then either $J_1 \subseteq P$ or $J_2 \subseteq P$.

Proof (i) ⇒ (ii): Suppose \(a \Gamma S b \subseteq P \). Then \(<a> \Gamma <a> \Gamma \Gamma \subseteq P \). Since \(<a> \Gamma <a> \), \(\Gamma \) are ideals of \(S \), so by (i) we have either \(<a> \Gamma <a> \subseteq P \) or \(\Gamma \subseteq P \). By repeated uses of (i) we get \(a \in <a> \subseteq P \) or \(b \in \subseteq P \).

(ii) ⇒ (iii): Let \(I_1 \Gamma I_2 \subseteq P \). Let \(I_1 \not\subseteq P \). Then there exists an element \(a_1 \in I_1 \) such that \(a_1 \notin P \). Then for every \(a_2 \in I_2 \) we have \(a_1 \Gamma S a_2 \subseteq I_1 \Gamma I_2 \subseteq P \). Hence from (ii) \(a_2 \notin P \). Thus \(I_2 \subseteq P \). Similarly (ii) implies (iv).

The proof is completed by observing that (i) is implied obviously either by (iii) or by (iv).

 Definition 2.9 An ideal \(P \) of a \(\Gamma \)-Semigroup \(S \) is called a uniformly strongly prime ideal (usp ideal) if \(S \) and \(\Gamma \) contain finite subsets \(F \) and \(\Delta \) respectively such that \(x \Delta F \Delta y \subseteq P \) implies that \(x \in P \) or \(y \in P \) for all \(x, y \in S \).

Theorem 2.10 Let \(S \) be a \(\Gamma \)-semigroup. Then every uniformly strongly prime ideal is a prime ideal.

Proof Let \(P \) be a uniformly strongly prime ideal of \(S \). Then \(S \) and \(\Gamma \) contain finite subsets \(F \) and \(\Delta \) respectively such that \(x \Delta F \Delta y \subseteq P \) implies that \(x \in P \) or \(y \in P \) for all \(x, y \in S \). Now let \(a \Gamma S b \subseteq P \). Thus we have \(a \Delta F \Delta b \subseteq a \Gamma S b \subseteq P \) and hence we have \(a \in P \) or \(b \in P \). Hence \(P \) is prime ideal by Theorem 2.8.

Throughout this paper \(S \) will always denote a \(\Gamma \)-Semigroup with zero and unless otherwise stated a \(\Gamma \)-Semigroup means a \(\Gamma \)-Semigroup with zero.

3 Structure space of \(\Gamma \)-semigroups

Suppose \(\mathcal{A} \) is the collection of all uniformly strongly prime ideals of a \(\Gamma \)-Semigroup \(S \). For any subset \(A \) of \(\mathcal{A} \), we define

\[\overline{A} = \{ I \in \mathcal{A}: \bigcap_{I_\alpha \in A} I_\alpha \subseteq I \}. \]

It is easy to see that \(\overline{\emptyset} = \emptyset \).

Theorem 3.1 Let \(A, B \) be any two subsets of \(\mathcal{A} \). Then

(i) \(A \subseteq \overline{A} \)

(ii) \(\overline{A} = \overline{\overline{A}} \)

(iii) \(A \subseteq B \implies \overline{A} \subseteq \overline{B} \)

(iv) \(A \cup B = \overline{A \cup B} \)

Proof (i): Clearly, \(\bigcap_{I_\alpha \in A} I_\alpha \subseteq I_\alpha \) for each \(\alpha \) and hence \(A \subseteq \overline{A} \).

(ii): By (i), we have \(\overline{A} \subseteq \overline{\overline{A}} \). For converse part, let \(I_\beta \in \overline{A} \). Then \(\bigcap_{I_\alpha \in \overline{A}} I_\alpha \subseteq I_\beta \). Now \(I_\alpha \in \overline{A} \) implies that \(\bigcap_{I_\gamma \in \overline{A}} I_\gamma \subseteq I_\alpha \) for all \(\alpha \in \Lambda \). Thus

\[\bigcap_{I_\gamma \in \Lambda} I_\gamma \subseteq \bigcap_{I_\alpha \in \overline{A}} I_\alpha \subseteq I_\beta \] i.e. \(\bigcap_{I_\alpha \in \Lambda} I_\gamma \subseteq I_\beta \).
So \(I_\beta \in \overline{\mathcal{A}} \) and hence \(\overline{\mathcal{A}} \subseteq \overline{\mathcal{A}} \). Consequently, \(\overline{\mathcal{A}} = \overline{\mathcal{A}} \).

(iii): Suppose that \(A \subseteq B \). Let \(I_\alpha \in \overline{\mathcal{A}} \). Then \(\bigcap_{\beta \in A} I_\beta \subseteq I_\alpha \). Since \(A \subseteq B \), it follows that

\[
\bigcap_{\beta \in B} I_\beta \subseteq \bigcap_{\beta \in A} I_\beta \subseteq I_\alpha.
\]

This implies that \(I_\alpha \in B \) and hence \(\overline{\mathcal{A}} \subseteq B \).

(iv): Clearly, \(\overline{A \cup B} \subseteq \overline{A} \cup \overline{B} \).

For the reverse part, let \(I_\alpha \in \overline{A \cup B} \). Then \(\bigcap_{I_\beta \in A \cup B} I_\beta \subseteq I_\alpha \).

It is easy to see that

\[
\bigcap_{I_\beta \in A \cup B} I_\beta = \left(\bigcap_{I_\beta \in A} I_\beta \right) \cap \left(\bigcap_{I_\beta \in B} I_\beta \right).
\]

Since \(\bigcap_{I_\beta \in A} I_\beta \) and \(\bigcap_{I_\beta \in B} I_\beta \) are ideals of \(S \), we have

\[
\left(\bigcap_{I_\beta \in A} I_\beta \right) \cap \left(\bigcap_{I_\beta \in B} I_\beta \right) \subseteq \left(\bigcap_{I_\beta \in A} I_\beta \right) \cap \left(\bigcap_{I_\beta \in B} I_\beta \right) = \bigcap_{I_\beta \in A \cup B} I_\beta \subseteq I_\alpha.
\]

Since every uniformly strongly prime ideal is prime, \(I_\alpha \) is a prime ideal of \(S \) and hence either \(\bigcap_{I_\beta \in A} I_\beta \subseteq I_\alpha \) or \(\bigcap_{I_\beta \in B} I_\beta \subseteq I_\alpha \) i.e. either \(I_\alpha \in \overline{A} \) or \(I_\alpha \in \overline{B} \) i.e. \(I_\alpha \in \overline{A \cup B} \). Consequently, \(\overline{A \cup B} \subseteq \overline{A} \cup \overline{B} \) and hence \(\overline{A \cup B} = \overline{A} \cup \overline{B} \). \(\square \)

Definition 3.2 The closure operator \(A \rightarrow \overline{A} \) gives a topology \(\tau_A \) on \(A \). This topology \(\tau_A \) is called the hull-kernel topology and the topological space \((A, \tau_A)\) is called the structure space of the \(\Gamma \)-Semigroup \(S \).

Let \(I \) be a ideal of a \(\Gamma \)-Semigroup \(S \). We define

\[\Delta(I) = \{ I' \in A : I \subseteq I' \} \quad \text{and} \quad C\Delta(I) = A \setminus \Delta(I) = \{ I' \in A : I \nsubseteq I' \}.\]

Now we have the following result:

Proposition 3.3 Any closed set in \(A \) is of the form \(\Delta(I) \), where \(I \) is a ideal of a \(\Gamma \)-Semigroup \(S \).

Proof Let \(\overline{A} \) be any closed set in \(A \), where \(A \subseteq A \). Let \(A = \{ I_\alpha : \alpha \in \Lambda \} \) and

\[
I = \bigcap_{I_\alpha \in A} I_\alpha.
\]

Then \(I \) is a ideal of \(S \). Let \(I' \in \overline{A} \). Then \(\bigcap_{I_\alpha \in A} I_\alpha \subseteq I' \). This implies that \(I \subseteq I' \). Consequently, \(I' \in \Delta(I) \). So \(\overline{A} \subseteq \Delta(I) \).

Conversely, let \(I' \in \Delta(I) \). Then \(I \subseteq I' \) i.e. \(\bigcap_{I_\alpha \in A} I_\alpha \subseteq I' \). Consequently, \(I' \in \overline{A} \) and hence \(\Delta(I) \subseteq \overline{A} \). Thus \(\overline{A} = \Delta(I) \). \(\square \)

Corollary 3.4 Any open set in \(A \) is of the form \(C\Delta(I) \), where \(I \) is a ideal of \(S \).
Let S be a Γ-Semigroup and $a \in S$. We define

$$\Delta(a) = \{I \in \mathcal{A}: a \in I\} \quad \text{and} \quad C\Delta(a) = \mathcal{A} \setminus \Delta(a) = \{I \in \mathcal{A}: a \notin I\}.$$

Then we have the following result:

Proposition 3.5 \{C\Delta(a): a \in S\} forms an open base for the hull-kernel topology $\tau_{\mathcal{A}}$ on \mathcal{A}.

Proof Let $U \in \tau_{\mathcal{A}}$. Then $U = C\Delta(I)$, where I is an ideal of S. Let $J \in U = C\Delta(I)$. Then $I \not\subseteq J$. This implies that there exists $a \in I$ such that $a \notin J$. Thus $J \in C\Delta(a)$. Now it remains to show that $C\Delta(a) \subseteq U$. Let $K \in C\Delta(a)$. Then $a \notin K$. This implies that $I \not\subseteq K$. Consequently, $K \in U$ and hence $C\Delta(a) \subseteq U$. So we find that $J \in C\Delta(a) \subseteq U$. Thus \{C\Delta(a): a \in S\} is an open base for the hull-kernel topology $\tau_{\mathcal{A}}$ on \mathcal{A}.

Theorem 3.6 The structure space $(\mathcal{A}, \tau_{\mathcal{A}})$ is a T_0-space.

Proof Let I_1 and I_2 be two distinct elements of \mathcal{A}. Then there is an element a either in $I_1 \setminus I_2$ or in $I_2 \setminus I_1$. Suppose that $a \in I_1 \setminus I_2$. Then $C\Delta(a)$ is a neighbourhood of I_2 not containing I_1. Hence $(\mathcal{A}, \tau_{\mathcal{A}})$ is a T_0-space.

Theorem 3.7 $(\mathcal{A}, \tau_{\mathcal{A}})$ is a T_1-space if and only if no element of \mathcal{A} is contained in any other element of \mathcal{A}.

Proof Let $(\mathcal{A}, \tau_{\mathcal{A}})$ be a T_1-space. Suppose that I_1 and I_2 be any two distinct elements of \mathcal{A}. Then each of I_1 and I_2 has a neighbourhood not containing the other. Since I_1 and I_2 are arbitrary elements of \mathcal{A}, it follows that no element of \mathcal{A} is contained in any other element of \mathcal{A}.

Conversely, suppose that no element of \mathcal{A} is contained in any other element of \mathcal{A}. Let I_1 and I_2 be any two distinct elements of \mathcal{A}. Then by hypothesis, $I_1 \not\subseteq I_2$ and $I_2 \not\subseteq I_1$. This implies that there exist $a, b \in S$ such that $a \in I_1$ but $a \notin I_2$ and $b \in I_2$ but $b \notin I_1$. Consequently, we have $I_1 \in C\Delta(b)$ but $I_1 \notin C\Delta(a)$ and $I_2 \in C\Delta(a)$ but $I_2 \notin C\Delta(b)$ i.e. each of I_1 and I_2 has a neighbourhood not containing the other. Hence $(\mathcal{A}, \tau_{\mathcal{A}})$ is a T_1-space.

Corollary 3.8 Let \mathcal{M} be the set of all proper maximal ideals of a Γ-Semigroup S with unities. Then $(\mathcal{M}, \tau_{\mathcal{M}})$ is a T_1-space, where $\tau_{\mathcal{M}}$ is the induced topology on \mathcal{M} from $(\mathcal{A}, \tau_{\mathcal{A}})$.

Theorem 3.9 $(\mathcal{A}, \tau_{\mathcal{A}})$ is a Hausdorff space if and only if for any two distinct pair of elements I, J of \mathcal{A}, there exist $a, b \in S$ such that $a \notin I$, $b \notin J$ and there does not exist any element K of \mathcal{A} such that $a \notin K$ and $b \notin K$.

Proof Let $(\mathcal{A}, \tau_{\mathcal{A}})$ be a Hausdorff space. Then for any two distinct elements I, J of \mathcal{A}, there exist basic open sets $C\Delta(a)$ and $C\Delta(b)$ such that $I \in C\Delta(a)$, $J \in C\Delta(b)$ and $C\Delta(a) \cap C\Delta(b) = \emptyset$. Now $I \in C\Delta(a)$ and $J \in C\Delta(b)$ imply
that \(a \notin I \) and \(b \notin J \). If possible, let \(K \) be any element of \(A \) such that \(a \notin K \) and \(b \notin K \). Then \(K \in C\Delta(a) \), \(K \in C\Delta(b) \) and hence \(K \in C\Delta(a) \cap C\Delta(b) \), a contradiction, since \(C\Delta(a) \cap C\Delta(b) = \emptyset \). Thus there does not exist any element \(K \) of \(A \) such that \(a \notin K \) and \(b \notin K \).

Conversely, suppose that the given condition holds and \(I, J \in A \) such that \(I \neq J \). Let \(a, b \in S \) be such that \(a \notin I \), \(b \notin J \) and there does not exist any \(K \) of \(A \) such that \(a \notin K \) and \(b \notin K \). Then \(I \in C\Delta(a) \), \(J \in C\Delta(b) \) and \(C\Delta(a) \cap C\Delta(b) = \emptyset \). This implies that \((A, \tau_A) \) is a Hausdorff space.

Corollary 3.10 If \((A, \tau_A)\) is a Hausdorff space, then no proper uniformly strongly prime ideal contains any other proper uniformly strongly prime ideal.

If \((A, \tau_A)\) contains more than one element, then there exist \(a, b \in S \) such that \(A = C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \), where \(I \) is the ideal generated by \(a, b \).

Proof Suppose that \((A, \tau_A)\) is a Hausdorff space. Since every Hausdorff space is a \(T_1 \)-space, \((A, \tau_A)\) is a \(T_1 \)-space. Hence by Theorem 3.7, it follows that no proper uniformly strongly prime ideal contains any other proper uniformly strongly prime ideal. Now let \(J, K \in A \) be such that \(J \neq K \). Since \((A, \tau_A)\) is a Hausdorff space, there exist basic opens sets \(C\Delta(a) \) and \(C\Delta(b) \) such that \(J \in C\Delta(a) \), \(K \in C\Delta(b) \) and \(C\Delta(a) \cap C\Delta(b) = \emptyset \). Let \(I \) be the ideal generated by \(a, b \). Then \(I \) is the smallest ideal containing \(a \) and \(b \). Let \(K \in A \). Then either \(a \in K \), \(b \notin K \) or \(a \notin K \), \(b \in K \) or \(a, b \in K \). The case \(a \notin K \), \(b \notin K \) is not possible, since \(C\Delta(a) \cap C\Delta(b) = \emptyset \). Now in the first case, \(K \in C\Delta(b) \) and hence \(A \subseteq C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \). In the second case, \(K \in C\Delta(a) \) and hence \(A \subseteq C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \). In the third case, \(K \in \Delta(I) \) and hence \(A \subseteq C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \). So we find that \(A \subseteq C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \). Again, clearly \(C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \subseteq A \). Hence \(A = C\Delta(a) \cup C\Delta(b) \cup \Delta(I) \).

Theorem 3.11 \((A, \tau_A)\) is a regular space if and only if for any \(I \in A \) and \(a \notin I \), \(a \in S \), there exist an ideal \(J \) of \(S \) and \(b \in S \) such that \(I \in C\Delta(b) \subseteq \Delta(J) \subseteq C\Delta(a) \).

Proof Let \((A, \tau_A)\) be a regular space. Let \(I \in A \) and \(a \notin I \). Then \(I \in C\Delta(a) \) and \(A \setminus C\Delta(a) \) is a closed set not containing \(I \). Since \((A, \tau_A)\) is a regular space, there exist disjoint open sets \(U \) and \(V \) such that \(I \in U \) and \(A \setminus C\Delta(a) \subseteq V \). This implies that \(A \setminus V \subseteq C\Delta(a) \). Since \(V \) is open, \(A \setminus V \) is closed and hence there exists an ideal \(J \) of \(S \) such that \(A \setminus V = \Delta(J) \), by Proposition 3.3. So we find that \(\Delta(J) \subseteq C\Delta(a) \). Again, since \(U \cap V = \emptyset \), we have \(V \subseteq A \setminus U \). Since \(U \) is open, \(A \setminus U \) is closed and hence there exists an ideal \(K \) of \(S \) such that \(A \setminus U = \Delta(K) \). Since \(I \in U \), \(I \notin A \setminus U = \Delta(K) \). This implies that \(K \notin I \). Thus there exists \(b \in K \) such that \(b \notin I \). So \(I \in C\Delta(b) \). Now we show that \(V \subseteq \Delta(b) \). Let \(M \in V \subseteq \Delta(K) \). Then \(K \subseteq M \). Since \(b \in K \), it follows that \(b \in M \) and hence \(M \in \Delta(b) \). Consequently, \(V \subseteq \Delta(b) \). This implies that \(A \setminus \Delta(b) \subseteq A \setminus V = \Delta(J) \implies C\Delta(b) \subseteq \Delta(J) \). Thus we find that \(I \in C\Delta(b) \subseteq \Delta(J) \subseteq C\Delta(a) \).
Conversely, suppose that the given condition holds. Let \(I \in \mathcal{A} \) and \(\Delta(K) \) be any closed set not containing \(I \). Since \(I \notin \Delta(K) \), we have \(K \nsubseteq I \). This implies that there exists \(a \in K \) such that \(a \notin I \). Now by the given condition, there exists an ideal \(J \) of \(S \) and \(b \in S \) such that \(I \subseteq C \Delta(b) \subseteq \Delta(J) \subseteq C \Delta(a) \). Since \(a \in K \), \(C \Delta(a) \cap \Delta(K) = \emptyset \). This implies that \(\Delta(K) \subseteq A \setminus C \Delta(a) \subseteq A \setminus \Delta(J) \). Since \(\Delta(J) \) is a closed set, \(A \setminus \Delta(J) \) is an open set containing the closed set \(\Delta(K) \). Clearly, \(C \Delta(b) \cap (A \setminus \Delta(J)) = \emptyset \). So we find that \(C \Delta(b) \) and \(A \setminus \Delta(J) \) are two disjoints open sets containing \(I \) and \(\Delta(K) \) respectively. Consequently, \((\mathcal{A}, \tau_{\mathcal{A}})\) is a regular space.

Theorem 3.12 \((\mathcal{A}, \tau_{\mathcal{A}})\) is a compact space if and only if for any collection \(\{a_\alpha\}_{\alpha \in \Lambda} \subset S \) there exists a finite subcollection \(\{a_i: i = 1, 2, \ldots, n\} \) in \(S \) such that for any \(I \in \mathcal{A} \), there exists \(a_i \) such that \(a_i \notin I \).

Proof Let \((\mathcal{A}, \tau_{\mathcal{A}})\) be a compact space. Then the open cover \(\{C \Delta(a_\alpha): a_\alpha \in S\} \) of \((\mathcal{A}, \tau_{\mathcal{A}})\) has a finite subcover \(\{C \Delta(a_i): i = 1, 2, \ldots, n\} \). Let \(I \) be any element of \(\mathcal{A} \). Then \(I \subseteq C \Delta(a_i) \) for some \(a_i \in S \). This implies that \(a_i \notin I \). Hence \(\{a_i: i = 1, 2, \ldots, n\} \) is the required finite subcollection of elements of \(S \) such that for any \(I \in \mathcal{A} \), there exists \(a_i \) such that \(a_i \notin I \).

Conversely, suppose that the given condition holds. Let \(\{C \Delta(a_\alpha): a_\alpha \in S\} \) be an open cover of \(\mathcal{A} \). Suppose to the contrary that no finite subcollection of \(\{C \Delta(a_\alpha): a_\alpha \in S\} \) covers \(\mathcal{A} \). This means that for any finite set \(\{a_1, a_2, \ldots, a_n\} \) of elements of \(S \),

\[
C \Delta(a_1) \cup C \Delta(a_2) \cup \ldots \cup C \Delta(a_n) \neq \mathcal{A}
\]

\[
\Rightarrow \quad \Delta(a_1) \cap \Delta(a_2) \cap \ldots \cap \Delta(a_n) \neq \emptyset
\]

\[
\Rightarrow \quad \text{there exists } I \in \mathcal{A} \text{ such that } I \subseteq \Delta(a_1) \cap \Delta(a_2) \cap \ldots \cap \Delta(a_n)
\]

\[
\Rightarrow \quad a_1, a_2, \ldots, a_n \in I, \text{ which contradicts our hypothesis .}
\]

So the open cover \(\{C \Delta(a_\alpha): a_\alpha \in S\} \) has a finite subcover and hence \((\mathcal{A}, \tau_{\mathcal{A}})\) is compact.

Corollary If \(S \) is finitely generated, then \((\mathcal{A}, \tau_{\mathcal{A}})\) is a compact space.

Proof Let \(\{a_i: i = 1, 2, \ldots, n\} \) be a finite set of generators of \(S \). Then for any \(I \in \mathcal{A} \), there exists \(a_i \) such that \(a_i \notin I \), since \(I \) is a proper uniformly strongly prime ideal of \(S \). Hence by Theorem 3.12, \((\mathcal{A}, \tau_{\mathcal{A}})\) is a compact space.

Definition 3.14 A \(\Gamma \)-Semigroup \(S \) is called a Noetherian \(\Gamma \)-Semigroup if it satisfies the ascending chain condition on ideals of \(S \) i.e. if \(I_1 \subseteq I_2 \subseteq \ldots \subseteq I_n \subseteq \ldots \) is an ascending chain of ideals of \(S \), then there exists a positive integer \(m \) such that \(I_n = I_m \) for all \(n \geq m \).

Theorem 3.15 If \(S \) is a Noetherian \(\Gamma \)-Semigroup, then \((\mathcal{A}, \tau_{\mathcal{A}})\) is countably compact.

Proof Let \(\{\Delta(I_n)\}_{n=1}^\infty \) be a countable collection of closed sets in \(\mathcal{A} \) with finite intersection property (FIP). Let us consider the following ascending chain of prime ideals of \(S \):

\[
< I_1 > \subseteq < I_1 \cup I_2 > \subseteq < I_1 \cup I_2 \cup I_3 > \subseteq \ldots
\]
Since S is a Noetherian Γ-Semigroup, there exists a positive integer m such that $<I_1 \cup I_2 \cup \ldots \cup I_m> = <I_1 \cup I_2 \cup \ldots \cup I_{m+1}> = \ldots$

Thus it follows that $<I_1 \cup I_2 \cup \ldots \cup I_m> \in \bigcap_{n=1}^{\infty} \Delta(I_n)$. Consequently, $\bigcap_{n=1}^{\infty} \Delta(I_n) \neq \emptyset$ and hence (A, τ_A) is countably compact.

\begin{corollary}
If S is a Noetherian Γ-Semigroup and (A, τ_A) is second countable, then (A, τ_A) is compact.
\end{corollary}

\begin{proof}
Proof follows from Theorem 3.15 and the fact that a second countable space is compact if it is countably compact.
\end{proof}

\begin{remark}
Let $\{I_\alpha\}$ be a collection of prime ideals of a Γ-semigroup S. Then $\bigcap I_\alpha$ is an ideal of S but it may not be a prime ideal of S, in general.

However; in particular, we have the following result:

\begin{proposition}
Let $\{I_\alpha\}$ be a collection of prime ideals of a Γ-semigroup S such that $\{I_\alpha\}$ forms a chain. Then $\bigcap I_\alpha$ is a prime ideal of S.
\end{proposition}

\begin{proof}
Clearly, $\bigcap I_\alpha$ is an ideal of S. Let $A \Gamma B \subsetneq \bigcap I_\alpha$ for any two ideals A, B of S. If possible, let $A, B \not\subseteq \bigcap I_\alpha$. Then there exist α and β such that $A \not\subseteq I_\alpha$ and $B \not\subseteq I_\beta$. Since I_α is a chain, let $I_\alpha \subseteq I_\beta$. This implies that $B \not\subseteq I_\alpha$. Since $A \Gamma B \subsetneq \bigcap I_\alpha$ and I_α is prime, we must have either $A \subseteq I_\alpha$ or $B \subseteq I_\alpha$, a contradiction. Therefore, either $A \subseteq \bigcap I_\alpha$ or $B \subseteq \bigcap I_\alpha$. Consequently, $\bigcap I_\alpha$ is a prime ideal of S.
\end{proof}

\begin{definition}
The structure space (A, τ_A) is called irreducible if for any decomposition $A = A_1 \cup A_2$, where A_1 and A_2 are closed subsets of A, we have either $A = A_1$ or $A = A_2$.

\begin{theorem}
Let A be a closed subset of A. Then A is irreducible if and only if $\bigcap_{I_\alpha \in A} I_\alpha$ is a prime ideal of S.
\end{theorem}

\begin{proof}
Let A be irreducible. Let P and Q be two ideals of S such that $P \Gamma Q \subsetneq \bigcap_{I_\alpha \in A} I_\alpha$. Then $P \Gamma Q \subsetneq I_\alpha$ for all α. Since I_α is prime, either $P \not\subseteq I_\alpha$ or $Q \not\subseteq I_\alpha$ which implies for $I_\alpha \in A$ either $I_\alpha \in \{P\}$ or $I_\alpha \in \{Q\}$. Hence $A = (A \cap P) \cup (A \cap Q)$. Since A is irreducible and $(A \cap P), (A \cap Q)$ are closed, it follows that $A = A \cap P$ or $A = A \cap Q$ and hence $A \subseteq P$ or $A \subseteq Q$. This implies that $P \subseteq \bigcap_{I_\alpha \in A} I_\alpha$ or $Q \subseteq \bigcap_{I_\alpha \in A} I_\alpha$. Consequently, $\bigcap_{I_\alpha \in A} I_\alpha$ is a prime ideal of S.

Conversely, suppose that $\bigcap_{I_\alpha \in A} I_\alpha$ is a prime ideal of S. Let $A = A_1 \cup A_2$, where A_1 and A_2 are closed subsets of A. Then $\bigcap_{I_\alpha \in A} I_\alpha \subseteq \bigcap_{I_\alpha \in A_1} I_\alpha$ and $\bigcap_{I_\alpha \in A} I_\alpha \subseteq \bigcap_{I_\alpha \in A_2} I_\alpha$. Also

$$\bigcap_{I_\alpha \in A} I_\alpha = \bigcap_{I_\alpha \in A_1 \cup A_2} I_\alpha = \left(\bigcap_{I_\alpha \in A_1} I_\alpha \right) \cap \left(\bigcap_{I_\alpha \in A_2} I_\alpha \right).$$
Now
\[
\left(\bigcap_{I_a \in A_1} I_a \right)^\Gamma \left(\bigcap_{I_a \in A_2} I_a \right) \subseteq \left(\bigcap_{I_a \in A_1} I_a \right) \quad \text{and} \quad \left(\bigcap_{I_a \in A_1} I_a \right)^\Gamma \left(\bigcap_{I_a \in A_2} I_a \right) \subseteq \left(\bigcap_{I_a \in A_2} I_a \right).
\]

Thus we have
\[
\left(\bigcap_{I_a \in A_1} I_a \right)^\Gamma \left(\bigcap_{I_a \in A_2} I_a \right) \subseteq \left(\bigcap_{I_a \in A_1} I_a \right) \cap \left(\bigcap_{I_a \in A_2} I_a \right).
\]

Since \(\bigcap_{I_a \in A} I_a \) is prime, it follows that either
\[
\bigcap_{I_a \in A_1} I_a \subseteq \bigcap_{I_a \in A} I_a \quad \text{or} \quad \bigcap_{I_a \in A_2} I_a \subseteq \bigcap_{I_a \in A} I_a.
\]

So we find that
\[
\bigcap_{I_a \in A} I_a = \bigcap_{I_a \in A_1} I_a \quad \text{or} \quad \bigcap_{I_a \in A} I_a = \bigcap_{I_a \in A_2} I_a.
\]

Let \(I_\beta \in A \). Then we have
\[
\bigcap_{I_a \in A_1} I_a \subseteq I_\beta \quad \text{or} \quad \bigcap_{I_a \in A_2} I_a \subseteq I_\beta.
\]

Since \(A_1, A_2 \subseteq A \), so either \(I_a \subseteq I_\beta \) for all \(I_a \in A_1 \) or \(I_a \subseteq I_\beta \) for all \(I_a \in A_2 \). Thus \(I_\beta \in A_1 \) or \(I_\beta \in A_2 \), since \(A_1 \) and \(A_2 \) are closed. i.e. \(A = A_1 \) or \(A = A_2 \).

Let \(C \) be the collection of all uniformly strongly prime full ideals of a \(\Gamma \)-semigroup \(S \). Then we see that \(C \) is a subset of \(A \) and hence \((C, \tau_C) \) is a topological space, where \(\tau_C \) is the subspace topology.

In general, \((A, \tau_A)\) is not compact and connected. But in particular, for the topological space \((C, \tau_C)\), we have the following results:

Theorem 3.21 \((C, \tau_C)\) is a compact space.

Proof Let \(\{\Delta(I_\alpha)\} : \alpha \in A \) be any collection of closed sets in \(C \) with finite intersection property. Let \(I \) be the uniformly strongly prime full ideal generated by \(E(S) \). Since any uniformly strongly prime full ideal \(J \) contains \(E(S) \), \(J \) contains \(I \). Hence \(I \in \bigcap_{\alpha \in A} \Delta(I_\alpha) \neq \emptyset \). Consequently, \((C, \tau_C)\) is a compact space. \(\square \)

Theorem 3.22 \((C, \tau_C)\) is a connected space.

Proof Let \(I \) be the uniformly strongly prime ideal generated by \(E(S) \). Since any uniformly strongly prime full ideal \(J \) contains \(E(S) \), \(J \) contains \(I \). Hence \(I \) belongs to any closed set \(\Delta(I') \) of \(C \). Consequently, any two closed sets of \(C \) are not disjoint. Hence \((C, \tau_C)\) is a connected space. \(\square \)
References