A Decomposition of Homomorphic Images of Nearlattices

IVAN CHAJDA1, MIROSLAV KOLAŘÍK2

Department of Algebra and Geometry, Faculty of Science, Palacký University,
Tomkova 40, 779 00 Olomouc, Czech Republic
e-mail: 1chajda@inf.upol.cz
2kolarik@inf.upol.cz

(Received January 12, 2006)

Abstract

By a nearlattice is meant a join-semilattice where every principal filter is a lattice with respect to the induced order. The aim of our paper is to show for which nearlattice S and its element c the mapping $\phi_c(x) = \langle x \lor c, x \land c \rangle$ is a (surjective, injective) homomorphism of S into $[c] \times (c)$.

Key words: Nearlattice; semilattice; distributive element; pseudo-complement; dual pseudocomplement.

2000 Mathematics Subject Classification: 06A12, 06B99, 06D99

It is well-known (see e.g. [4]) that if L is a bounded distributive lattice and $c \in L$ has a complement in L then L is isomorphic to the direct product $[c] \times (c)$. On the other hand, if c is not complemented then the mapping $\varphi_c(x) = \langle x \lor c, x \land c \rangle$ is still an injective homomorphism of L into the mentioned direct product and one can discuss whether the homomorphic image $\varphi_c(L)$ is a subdirect product of $[c] \times (c)$.

In what follows we generalize this setting for the so-called nearlattices (see [1–3, 5–8]) and we investigate which of these results remain true. It turns out that our task is reasonable only for a class of so-called nested nearlattices.

Definition 1 By a nearlattice we mean a semilattice $S = (S; \lor)$ where for each $a \in S$ the principal filter $[a] = \{ x \in S; a \leq x \}$ is a lattice with respect to the induced order \leq of S.

*Supported by the Research Project MSM 6198959214.