$2-(n^2,2n,2n-1) { m\ Designs\ Obtained} { m\ from\ Affine\ Planes}^*$

ANDREA CAGGEGI

Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria Università di Palermo, viale delle Scienze I-90128, Palermo, Italy e-mail: caggegi@unipa.it

(Received January 20, 2006)

Abstract

The simple incidence structure $\mathcal{D}(\mathcal{A}, 2)$ formed by points and unordered pairs of distinct parallel lines of a finite affine plane $\mathcal{A} = (\mathcal{P}, \mathcal{L})$ of order n > 2 is a $2 - (n^2, 2n, 2n - 1)$ design. If n = 3, $\mathcal{D}(\mathcal{A}, 2)$ is the complementary design of \mathcal{A} . If n = 4, $\mathcal{D}(\mathcal{A}, 2)$ is isomorphic to the geometric design $AG_3(4, 2)$ (see [2; Theorem 1.2]). In this paper we give necessary and sufficient conditions for a $2 - (n^2, 2n, 2n - 1)$ design to be of the form $\mathcal{D}(\mathcal{A}, 2)$ for some finite affine plane \mathcal{A} of order n > 4. As a consequence we obtain a characterization of small designs $\mathcal{D}(\mathcal{A}, 2)$.

Key words: $2 - (n^2, 2n, 2n - 1)$ designs; incidence structure; affine planes.

2000 Mathematics Subject Classification: 05B05, 05B25

By a $2 - (v, k, \lambda)$ design we mean a pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ where \mathcal{P} is a set of v points and \mathcal{B} is a collection of distinguished subsets of \mathcal{P} called blocks such that each block contains k points and any two distinct points are contained in exactly λ common blocks¹. Our main result is the following

Theorem 1 Let n be an integer with n > 4 and let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a $2 - (n^2, 2n, 2n - 1)$ design. Then \mathcal{D} is of the form $\mathcal{D}(\mathcal{A}, 2)$ if and only if the following two conditions are satisfied: (c_1) any three distinct points of \mathcal{D}

^{*}Supported by MIUR, Università di Palermo.

¹For further definitions (and basic results) about 2-designs see [1].