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Abstract

A congruence relation θ on a 0-distributive lattice is defined such that
the quotient lattice L/θ is a distributive lattice and the prime spectrum of
L and of L/θ are homeomorphic. Also it is proved that the minimal prime
spectrum (maximal spectrum) of L is homeomorphic with the minimal
prime spectrum (maximal spectrum) of L/θ.
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1 Introduction

For topological concepts which have now become commonplace the reader is
referred to [7] and for lattice theoretic concepts the reader is referred to [6].
As a generalization of a distributive lattice and a pseudo-complemented lattice
Varlet [11] has introduced the concept of a 0-distributive lattice. A 0-distributive
lattice is a lattice L with 0 in which for all a, b, c ∈ L, a ∧ b = 0 = a ∧ c implies
a∧ (b∨ c) = 0. A large part of the theory of filters in distributive lattices can be
extended to 0-distributive lattices as pointed out in [12], [9] and [3]. A detailed
study of the space of prime filters of a 0-distributive lattice is carried out in [3].
The set ℘(L) of all prime filters of a bounded 0-distributive lattice L together
with the hull kernel topology, i.e. the topology for which {V (x) | x ∈ L} is a
base, where V (x) = {P ∈ ℘(L) | x 	∈ P}, is called the prime spectrum of L.
The reticulation of an algebra was first defined by Simmons [10] for commu-

tative rings and then for MV-algebras by Belluce [1]. Later it was extended to
non-commutative rings [2], BL-algebras [8], residuated lattices [5] and Heyting
algebras [4]. In each of the papers cited above except [5], although it is not
explicitly defined this way, the reticulation of an algebra A is a pair (L(A), λ)
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consisting of a bounded distributive lattice L(A) and a surjection λ : A→ L(A)
such that the function given by the inverse image of λ induces a homeomorphism
between the prime spectrum of L(A) and that of A. This construction allows
many properties to be transferred between L(A) and A.
In this paper we intend to furnish the reticulation for a 0-distributive lattice,

following the method of construction used for Heyting algebras by Dan [4].

2 Reticulation of a 0-distributive lattice

For any bounded lattice L, F(L) denotes the set of all filters of L. Obviously,
〈F(L),∧,∨〉 is a complete bounded lattice where F ∧ J = F ∩ J and F ∨ J =
[F ∪J). Now we state lemmas which we need for the development of this paper.

Lemma 2.1 Let L1 and L2 denote bounded lattices, f : L1 → L2 be an onto
{0, 1}-homomorphism. Let F and J be any two filters of L1. Then we have

1. f(F ) is a filter in L2;

2. F ⊆ J implies f(F ) ⊆ f(J);

3. f(F ∧ J) = f(F ) ∧ f(J);
4. f(F ∨ J) = f(F ) ∨ f(J);
5. f ([x)) = [f(x)) for any x ∈ L1.

Lemma 2.2 Let L1 and L2 denote bounded lattices, f : L1 → L2 be an onto
{0, 1}-homomorphism. Let {Fα | α ∈ Δ} be a family of filters in L1. Then we
have f

(∨
α∈Δ Fα

)
=
∨
α∈Δ f(Fα).

By combining the results of Lemma 2.1 and Lemma 2.2 we have the following
result

Remark 2.3 Let L1 and L2 denote bounded lattices. Let f : L1 → L2 be an
onto {0, 1}-homomorphism. Let F(L1) and F(L2) denote the lattice of filters of
L1 and L2 respectively. Then f induces a lattice homomorphism ψ : F(L1) →
F(L2) defined by ψ(F ) = f(F ) which preserves arbitrary joins and the property
of being principal filter.

For a {0, 1}-lattice homomorphism f : L1 → L2, for S ⊆ L2 we define
f−1(S) = {x ∈ L1 | f(x) ∈ S}. Then we have

Lemma 2.4 Let L1 and L2 denote bounded lattices, f : L1 → L2 be an onto
{0, 1}-homomorphism. For any filters S and T of L2, the following statements
hold.

1. f−1(S) is a filter in L1;

2. If S is a prime filter of L2, then f−1(S) is a prime filter of L1;

3. S ⊆ T implies f−1(S) ⊆ f−1(T ).
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Note that under an onto {0, 1}-homomorphism f : L1 → L2, the image of a
prime filter of L1 need not be a prime filter of L2. For this consider the following
example. Let L1 = {0, a, b, 1} and L2 = {0′, 1′} be two lattices whose Hasse
diagrams are as shown in the Figure 1. Define the mapping f : L1 → L2 by
f(b) = f(0) = 0′ and f(a) = f(1) = 1′.

0′0

1′1

a b

Fig. 1

Here, P = {1, b} is a prime filter of L1, but f(P ) = L2 is not prime.
Now onwards L will denote a bounded 0-distributive lattice unless otherwise

stated. ℘(L) denotes the set of all prime filters of L. For each x ∈ L define
V (x) = {P ∈ ℘(L) | x /∈ P}. Define a relation θ on L by

x ≡ y(θ) if and only if V (x) = V (y),

i.e., x ≡ y(θ) iff x /∈ P ⇔ y /∈ P for P ∈ ℘(L), or x ≡ y(θ) iff x ∈ P ⇔ y ∈ P
for P ∈ ℘(L). It is easy to verify that this relation θ is a congruence relation
(see [6]). Further we have

Theorem 2.5 The quotient lattice L/θ is a distributive lattice.

Proof For any a, b, c ∈ L, to prove that

[a]θ ∧ ([b]θ ∨ [c]θ
)
=
(
[a]θ ∧ [b]θ

) ∨ ([a]θ ∧ [c]θ
)
,

let x ∈ [a ∧ (b ∨ c)]θ. By definition of θ,
x ∈ P ⇔ a ∧ (b ∨ c) ∈ P for P ∈ ℘(L)

x ∈ P ⇔ a ∈ P and b ∨ c ∈ P for P ∈ ℘(L)

x ∈ P ⇔ a ∧ b ∈ P or a ∧ c ∈ P for P ∈ ℘(L)

x ∈ P ⇔ (a ∧ b) ∨ (a ∧ c) ∈ P for P ∈ ℘(L)

This shows that x ∈ [(a ∧ b) ∨ (a ∧ c)]θ. Hence

[a ∧ (b ∨ c)]θ ⊆ [(a ∧ b) ∨ (a ∧ c)]θ .

Always, [(a ∧ b) ∨ (a ∧ c)]θ ⊆ [a ∧ (b ∨ c)]θ. Hence

[a ∧ (b ∨ c)]θ = [(a ∧ b) ∨ (a ∧ c)]θ .
Therefore L/θ is a distributive lattice. �
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Let λ : L → L/θ be the canonical mapping defined by λ(x) = [x]θ. Then λ
is an onto {0, 1}-homomorphism. For any filter F of L, λ(F ) = F ∗ is a filter of
L/θ (see Lemma 2.1(1)). Further

F ∗ = {[x]θ ∈ L/θ | [x]θ = [y]θ for some y ∈ F}.
Similarly for any filter K of L/θ, λ−1(K) = K∗ is a filter of L (see Lemma
2.4(1)) and K∗ =

⋃
[x]θ∈K [x]θ.

If L is a bounded 0-distributive lattice, then we have

Theorem 2.6 The mapping ψ : F(L) → F(L/θ) induced by λ and defined by
ψ(F ) = F ∗ = λ(F ) is an onto lattice homomorphism which preserves

1. arbitrary joins,

2. being a principal filter,

3. being a prime filter.

Proof The proofs of the statements (1) and (2) follow from the Remark 2.3.
We now prove the statement (3) only. Let P be a prime filter on L. To prove
that λ(P ) = P ∗ is a prime filter of L/θ, let [x]θ ∨ [y]θ ∈ P ∗ for some x, y ∈ L.
Therefore [x ∨ y]θ = [t]θ for some t ∈ P . Then x ∨ y ≡ t(θ) for some t ∈ P . By
the definition of θ, x ∨ y ∈ P . As P is a prime filter, x ∈ P or y ∈ P . But then
[x]θ ∈ P ∗ or [y]θ ∈ P ∗. This shows that P ∗ = λ(P ) is a prime filter. �

Remark 2.7 For any filter K of L/θ, (K∗)∗ = K, but for a filter F of L,
(F ∗)∗ 	= F in general.

For this consider the following example. Let L = {0, a, b, c, d, e, 1} be the
lattice whose Hasse diagram is as given in Figure 2.

0

a

b

c

d

e

1

Fig. 2
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Then

F(L) = {{1}, {1, e}, {1, e, d}, {1, e, d, b}, {1, e, d, b, a}, {1, e, d, c}, L}

and
℘(L) = {{1}, {1, e}, {1, e, d, b, a}, {1, e, d, c}}.

Define θ on L by
x ≡ y(θ) ⇔ V (x) = V (y).

Since

V (1) = ∅,
V (e) = {{1}},
V (d) = {{1}, {1, e}},
V (b) = {{1}, {1, e}, {1, e, d, c}},
V (a) = {{1}, {1, e}, {1, e, d, c}},
V (c) = {{1}, {1, e}, {1, e, a, b, d}},
V (0) = ℘(L),

then 1 ≡ 1(θ), e ≡ e(θ), c ≡ c(θ), d ≡ d(θ), b ≡ a(θ) and 0 ≡ 0(θ). Consider the
filter F = {1, e, b, d}. Then F ∗ =

{
[1]θ, [e]θ, [b]θ, [d]θ

}
and (F ∗)∗ = {1, e, b, a, d}.

This shows that (F ∗)∗ 	= F .
Though (F ∗)∗ 	= F in general, under the condition of primeness on F we

have

Theorem 2.8 For any prime filter P of L, (P ∗)∗ = P .

Proof Let P be a prime filter of L. We have: x ∈ (P ∗)∗ ⇒ λ(x) ∈ P ∗

⇒ [x]θ ∈ P ∗ ⇒ [x]θ = [y]θ for some y ∈ P , i.e. x ≡ y(θ) and y ∈ P . By
the definition of θ, x ≡ y(θ) iff (x ∈ P ⇔ y ∈ P for any P ∈ ℘(L)). Hence
x ∈ P . This shows that (P ∗)∗ ⊆ P . Conversely, assume that x ∈ P . Then
λ(x) = [x]θ ∈ P ∗. As x ∈ λ−1([x]θ) we get x ∈ (P ∗)∗. This shows that
P ⊆ (P ∗)∗. Hence P = (P ∗)∗. �

From Theorem 2.8 we get

Corollary 2.9 The following statements hold.

1. If Q is a minimal prime filter of L, then Q∗ is a minimal prime filter
of L/θ.

2. If T is a minimal prime filter of L/θ, then T∗ is a minimal prime filter
of L.

3. If M is a maximal filter of L, then M∗ is a maximal filter of L/θ.

4. Let K be a maximal filter of L/θ. Then K∗ is a maximal filter of L.
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Proof (1) Let Q be a minimal prime filter of L. Then Q∗ is a prime filter of
L/θ (by Theorem 2.6). Let T be a prime filter in L/θ contained in Q∗. Thus
T ⊆ Q∗ ⇒ T∗ ⊆ (Q∗)∗ (by Lemma 2.4(3)) ⇒ T∗ ⊆ Q (by Theorem 2.8). Now,
T∗ is a prime filter of L (by Lemma 2.4(2)) and Q is a minimal prime filter of L,
whence T∗ = Q, and so T = Q∗. This shows that Q∗ is a minimal prime filter
of L/θ.
(2) Let T be a minimal prime filter of L/θ. Then T∗ is a prime filter of L (by

Lemma 2.4(2)). Let P be a prime filter of L contained in T∗. Then P ⊆ T∗ ⇒
P ∗ ⊆ (T∗)∗ (by Lemma 2.1(2)) ⇒ P ∗ ⊆ T (by Remark 2.7). As T is a minimal
prime filter of L/θ and P ∗ is a prime filter of L/θ (by Theorem 2.6(3)) we get
P ∗ = T . Hence P = T∗ (by Theorem 2.8). This proves that T∗ is a minimal
prime filter of L.
(3) Let M be a maximal filter of L. First we prove that M is prime. If M

is not a prime filter, then there exist a, b ∈ L such that a ∨ b ∈ M with a /∈ M
and b /∈ M . As M is maximal, there exist c, d ∈ M such that a ∧ c = 0 and
b ∧ d = 0. But then (a ∨ b) ∧ (c ∧ d) = 0 (L being a 0-distributive lattice) will
imply 0 ∈M ; which is absurd. Hence M is a prime filter.
By Lemma 2.1(1), M∗ is a filter of L/θ. Let there exist a proper filter, say

T , in L/θ containing M∗. But then M = (M∗)∗ ⊆ T∗ (by Lemma 2.4(3) and
Theorem 2.8). As T∗ is a filter of L (see Lemma 2.4(1)) and M is a maximal
filter of L, we get M = T∗. Hence M∗ = (T∗)∗ = T (by Remark 2.7). This
shows that M∗ is a maximal filter of L/θ.
(4) Let K be a maximal filter of L/θ. As L/θ is a distributive lattice (see

Theorem 2.5), K is a prime filter of L/θ. Hence K∗ is a proper filter of L. As
0 ∈ L, K∗ is contained in some maximal filter of L, say M . Then L being a
0-distributive lattice, M is a prime filter of L (see the proof of (3)) and hence
(M∗)∗ = M (by Theorem 2.8). Further, K∗ ⊆ M ⇒ (K∗)∗ ⊆ M∗ (see Lemma
2.1(2)) ⇒ K ⊆M∗ (see Remark 2.7). As M∗ is a filter of L/θ (Lemma 2.1(1))
by maximality of K, we get K = M∗. Hence K∗ = (M∗)∗ = M , which shows
that K∗ is a maximal filter of L. �

Remark 2.10 Note that Theorem 2.8 establishes a bijection between ℘(L) and
℘(L/θ) which preserves the property of being a minimal prime filter and the
property of being a maximal filter.

Let ℘(L) and ℘(L/θ) denote the set of all prime filters of L and of L/θ,
respectively. Equip ℘(L) and ℘(L/θ) with the Stone topologies τ and τ ′, re-
spectively. The base for the open sets for τ is the family B = {V (x) | x ∈ L}
where V (x) = {P ∈ ℘(L) | x /∈ P}. The base for the open sets for τ ′ is the
family B′ =

{
X([x]θ) | x ∈ L

}
where X([x]θ) =

{
P ∈ ℘(L/θ) | [x]θ ∈ P

}
. For

any family K ⊆ ℘(L) we write K∗ = {P ∗ | P ∈ K} with these notations we have
Theorem 2.11 The following statements are true for any x, y, xα ∈ L.

1. V (x)∗ = X([x]θ).

2. (V (x) ∩ V (y))∗ = V (x)∗ ∩ V (y)∗.
3.
(⋃

α∈Δ V (xα)
)∗

=
⋃
α∈Δ V (xα)

∗ =
⋃
α∈ΔX([xα]

θ).
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Proof (1) We have for any x ∈ L, V (x)∗ = {P ∗ | P ∈ V (x)} = {P ∗ | x /∈ P}.
Let P ∈ ℘(L) such that P ∗ ∈ V (x)∗. Then x /∈ P . If [x]θ ∈ P ∗, then there
exists y ∈ P such that [x]θ = [y]θ (since P ∗ = λ(P )). Hence x ≡ y(θ). As
y ∈ P and P ∈ ℘(L) we must get x ∈ P ; a contradiction. Hence [x]θ /∈ P ∗, i.e.
P ∗ ∈ X([x]θ) (P is a prime filter in L ⇒ P ∗ is a prime filter in L/θ by Theorem
2.6(3)). Hence V (x)∗ ⊆ X([x]θ).
Conversely, let T ∈ X([x]θ), i.e. T ∈ ℘(L/θ) such that [x]θ /∈ T . But then

x /∈ T∗ (= λ−1(T )). Furthermore, T ∈ ℘(L/θ)⇒ T∗ ∈ ℘(L) (see Lemma 2.4(2)).
As T∗ ∈ ℘(L) and x /∈ T∗, we get T∗ ∈ V (x). Hence (T∗)∗ ∈ V (x)∗. Therefore
T ∈ V (x)∗ (see Remark 2.7). This shows that X([x]θ) ⊆ V (x)∗. Combining
both inclusions, we get X([x]θ) = V (x)∗.
(2) For any x, y ∈ L we have

(V (x) ∩ V (y))∗ = V (x ∧ y)∗ = X([x ∧ y]θ) = X([x]θ ∧ [y]θ)

= X([x]θ) ∩X([y]θ) = V (x)∗ ∩ V (y)∗.

(3) Let P ∗ ∈ (⋃
α∈Δ V (xα)

)∗
. This implies P ∈ ⋃

α∈Δ V (xα). Hence
P ∈ V (xα0

) for some α0 ∈ Δ. But then P ∗∈ V (xα0
)∗ implies P ∗∈ ⋃α∈ΔV (xα)

∗.
Thus

(⋃
α∈Δ V (xα)

)∗ ⊆ ⋃
α∈Δ V (xα)

∗. Conversely, let P ∗ ∈ ⋃
α∈Δ V (xα)

∗.
Then P ∗ ∈ V (xα0

)∗ for some α0 ∈ Δ. But then P ∈ V (xα0
) implies

P ∈ ⋃
α∈Δ V (xα), and consequently, P ∗ ∈ (⋃

α∈Δ V (xα)
)∗
. Thus we get⋃

α∈Δ V (xα)
∗ ⊆ (⋃α∈Δ V (xα)

)∗
. Combining both inclusions, we get

⋃
α∈Δ

V (xα)
∗ =

( ⋃
α∈Δ

V (xα)

)∗
.

�

Now we prove that the prime spectrum ℘(L) of L and the prime spectrum
℘(L/θ) of L/θ are homeomorphic.

Theorem 2.12 Define the mapping g : ℘(L/θ) → ℘(L) by g(P ) = P∗ = λ−1(P )
for every P ∈ ℘(L/θ). Then g is a homeomorphism.

Proof Obviously, g is a well defined map (see Lemma 2.4(2)). Let P ∈ ℘(L).
Then P ∗ ∈ ℘(L/θ) (see Theorem 2.6(3)) and g(P ∗) = λ−1(P ∗) = (P ∗)∗ = P
(see Theorem 2.8). This shows that g is onto. If g(P1) = g(P2) for P1, P2 ∈
℘(L/θ) then P1 = P2 (by Remark 2.7). Therefore g is one-one.
We know that V (x) is a basic open set in the space ℘(L) for any x ∈ L.

Further, by Theorem 2.11(1) we get g−1(V (x)) = X([x]θ), which is basic open
set in the space ℘(L/θ), and hence g is continuous.
We know X([x]θ) is basic open set in the space ℘(L/θ) for any x ∈ L and

g
(
X([x]θ)

)
=
{
g(P ) ∈ ℘(L) | P ∈ ℘(L/θ) and [x]θ /∈ P

}
= {P∗ ∈ ℘(L) | λ(x) /∈ P, P ∈ ℘(L/θ)}
= {P∗ ∈ ℘(L) | x /∈ λ−1(P ) = P∗}
= {Q ∈ ℘(L) | x /∈ Q} = V (x),
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which is a basic open set in the space ℘(L) for any x ∈ L. Therefore g is an open
map. As g is a bijective, continuous and open map, g is a homeomorphism. �

Combining all the above results we have

Theorem 2.13 The pair (L/θ, λ) forms a reticulation for a bounded 0-distributive
lattice L.

By Corollary 2.9, we get

Corollary 2.14 The two spacesM(L) andM(L/θ) (with restricted Stone topolo-
gies) are homeomorphic, whereM(L) andM(L/θ) denote the spaces of minimal
prime filters of L and L/θ, respectively.

Corollary 2.15 The two spaces A(L) and A(L/θ) (with restricted Stone topolo-
gies) are homeomorphic, where A(L) and A(L/θ) denote the spaces of maximal
filters of L and L/θ, respectively.
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