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Abstract

In a previous paper, we introduced the notion of Boolean-like algebra
as a generalisation of Boolean algebras to an arbitrary similarity type. In a
nutshell, a double-pointed algebra A with constants 0, 1 is Boolean-like in
case for all a ∈ A the congruences θ (a, 0) and θ (a, 1) are complementary
factor congruences of A. We also introduced the weaker notion of semi-
Boolean-like algebra, showing that it retained some of the strong algebraic
properties characterising Boolean algebras. In this paper, we continue the
investigation of semi-Boolean like algebras. In particular, we show that
every idempotent semi-Boolean-like variety is term equivalent to a variety
of noncommutative Boolean algebras with additional regular operations.
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lattice theory

2000 Mathematics Subject Classification: 03C05, 06E75

1 Introduction

If asked to mention examples of varieties that are especially well-behaved from
the viewpoint of their algebraic properties, most universal algebra practicioners
would probably include Boolean algebras in their list. More than that, Boolean
algebras would most likely be cited as the leading example of a well-behaved
double-pointed variety—meaning a variety V whose type includes two constants
0, 1 such that 0A �= 1A in every nontrivial A ∈ V . Yet, since it is not infrequent
to find other double-pointed varieties of algebras that display Boolean-like fea-
tures, it can be reasonably asked what common properties of such are responsible
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for this kind of behaviour. In [15], we introduced the notion of Boolean-like al-
gebra as a generalisation of Boolean algebras to a double-pointed but otherwise
arbitrary similarity type. The idea behind our approach was that a Boolean-like
algebra is an algebra A such that every a ∈ A is central in the sense of Vaggione
[17], meaning that θ(a, 0) and θ(a, 1) are complementary factor congruences of
A. Central elements are especially convenient to work with because they can
be given an expedient equational characterisation; it also turns out that some
important properties of Boolean algebras are shared not only by Boolean-like
algebras, but also by algebras whose elements satisfy all the equational condi-
tions of central elements but one—in the terminology of [15], algebras whose
elements are all semi-central. These algebras, and the varieties they form, were
termed semi-Boolean-like in the same paper. Although double-pointed dis-
criminator varieties are prime examples of semi-Boolean-like varieties, a generic
semi-Boolean-like variety need not be c-subtractive or c-regular (c ∈ {0, 1}).
A better approximation to double-pointed discriminator varieties is given by
idempotent semi-Boolean-like varieties, whose members are 0-subtractive; actu-
ally, a double-pointed variety is discriminator iff it is idempotent semi-Boolean
like and 0-regular [15, Theorem 5.6]. This theorem also yields a new Maltsev-
type characterisation of double-pointed discriminator varieties.

In the present paper, we establish some new results on semi-Boolean-like
algebras and varieties. In § 2, we recall from [13] the notions of Church algebra
and Church variety as the most general concepts on which our approach is based.
Essentially, a Church algebra is a double-pointed algebra that appropriately
represents the if-then-else operation by means of a ternary term operation q. In
every Church algebra A central elements are the universe of a Boolean algebra
that is isomorphic to the Boolean algebra of complementary factor congruences
of A [15, Theorem 3.7], which means that every central element induces a direct
decomposition of A. Here, we prove that the factors in this decomposition can
be described by exploiting a generalisation of the relativisation construction for
Boolean algebras. In § 3, we proceed to deal with the stronger notions of semi-
Boolean-like algebras and varieties. The new results we present are essentially
two: we point out the exact relationship between semi-Boolean-like varieties
and the quasi-discriminator varieties of [14], and we provide semi-Boolean-like
algebras with an explicit weak Boolean product representation with directly
indecomposable factors. Finally, idempotent semi-Boolean-like algebras are the
centre of § 4. We consider a noncommutative generalisation of Boolean algebras
and prove—along the lines of similar results available for pointed discriminator
varieties [1] or for varieties with a commutative ternary deduction term [2]—
that every idempotent semi-Boolean-like variety is term equivalent to a variety
of noncommutative Boolean algebras with additional operations.

To avoid overtly deferring the presentation of the main new ideas and results
in this paper, we do not include a Preliminaries section. Still, each individual
section is written in such a way as to be reasonably self-contained. In particular,
the main definitions and results from [15] are duly recalled and summarised. The
notational and terminological conventions in the paper are the standard ones in
universal algebra (see e.g. [3]).
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2 Church varieties

Although the focus of the present paper is on semi-Boolean-like algebras and
varieties, we include herein a theorem on the weaker notion of Church algebra
that may yield a better insight into its overall significance. After recalling the
relevant definitions and results, in fact, we adapt to Church algebras a variant
of the well-known relativisation construction for Boolean algebras (see e.g. [10]).

2.1 Preliminaries

The key observation motivating the introduction of Church algebras [13] is that
many algebras arising in completely different fields of mathematics—including
Heyting algebras, rings with unit, or combinatory algebras—have a term op-
eration q satisfying the fundamental properties of the if-then-else connective:
q(1, x, y) ≈ x and q(0, x, y) ≈ y. As simple as they may appear, these proper-
ties are enough to yield rather strong results. This motivates the next definition.

Definition 1 An algebra A of type ν is a Church algebra if there are term
definable elements 0A, 1A ∈ A and a term operation qA s.t., for all a, b ∈ A

qA
(
1A, a, b

)
= a and qA

(
0A, a, b

)
= b.

A variety V of type ν is a Church variety if every member of V is a Church
algebra with respect to the same term q(x, y, z) and the same constants 0, 1.

Henceforth, the superscript in qA will be dropped whenever the difference
between the operation and the operation symbol is clear from the context, and
a similar policy will be followed in similar cases throughout the paper.

Examples of Church algebras include FLew-algebras (commutative, integral
and double-pointed residuated lattices, for which see [7]) and, in particular,
Heyting algebras and thus also Boolean algebras; ortholattices; rings with unit;
combinatory algebras. Expanding on an idea due to Vaggione [17], we also
define:

Definition 2 An element e of a Church algebra A is called central if the pair
(θ (e, 0) , θ (e, 1)) is a pair of complementary factor congruences on A. A central
element e is nontrivial if e /∈ {0, 1}. By Ce(A) we denote the centre of A, i.e.
the set of central elements of the algebra A.

It is proved in [15] that Church algebras have Boolean factor congruences
and that, by defining

x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x′ = q(x, 0, 1),

we get:

Theorem 1 Let A be a Church algebra. Then c [A] = (Ce (A) ;∨,∧,′ , 0, 1) is
a Boolean algebra which is isomorphic to the Boolean algebra of factor congru-
ences of A.
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It clearly follows that a Church algebra is directly indecomposable iff Ce (A) =
{0, 1}. This result, together with theorems by Comer [6] and Vaggione [17], im-
plies:

Theorem 2 Let A be a Church algebra, S be the Boolean space of maximal
ideals of c [A] and f : A→ ΠI∈SA/θI be the map defined by

f(a) = (a/θI : I ∈ S),
where θI =

∨
e∈I θ(0, e). Then we have:

1. f gives a weak Boolean representation of A.

2. f provides a Boolean representation of A iff, for all a �= b ∈ A, there exists
a least central element e such that q(e, a, b) = a (i.e., (a, b) ∈ θ(0, e)).

In general, not much can be said about the factors in this representation.
However, these factors are guaranteed to be directly indecomposable provided
that the d.i. members of V form a universal class. In fact, following [17], it is
shown in [15] that:

Theorem 3 Let V be a Church variety of type ν. Then, the following conditions
are equivalent:

(i) For all A ∈ V, the stalks A/θI (I ∈ S a maximal ideal) are directly
indecomposable.

(ii) The class VDI of directly indecomposable members of V is a universal
class.

2.2 A relativisation construction

We begin by recalling the following proposition from [15]:

Proposition 1 If A is a Church algebra of a given type ν and e ∈ A, the
following conditions are equivalent:

1. e is central;

2. θ(e, 0) ∧ θ(e, 1) = Δ;

3. for all a, b ∈ A, q(e, a, b) is the unique element s.t. aθ(e, 1)q(e, a, b)θ(e, 0)b;
4. For all a, b ∈ A, for all n-ary f ∈ ν, and for all a, b ∈ An:

1. q (e, a, a) = a

2. q (e, q (e, a, b) , c) = q (e, a, c) = q (e, a, q (e, b, c))

3. q
(
e, f (a) , f

(
b
))

= f (q (e, a1, b1) , . . . , q (e, an, bn))

4. q (e, 1, 0) = e

5. The function fe (a, b) = q (e, a, b) is a decomposition operation on A s.t.
fe (1, 0) = e.
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In sum, every central element e in a Church algebra yields a direct decom-
position of such via the corresponding factor congruences θ(e, 1) and θ(e, 0).
The factors A/θ(e, 1) and A/θ(e, 0) in this decomposition can be obtained in a
simplified way through a variant of the relativisation construction for Boolean
algebras.

If A is a Church algebra of type ν and e ∈ A is a central element, then we
define Ae = (Ae; ge)g∈ν to be the ν-algebra defined as follows:

Ae = {e ∧ b : b ∈ A}; ge(e ∧ b) = e ∧ g(e ∧ b).
Theorem 4 Let A be a Church algebra of type ν and e be a central element.
Then we have:

1. For every n-ary g ∈ ν and every sequence of elements b ∈ An, e ∧ g(b) =
e ∧ g(e ∧ b), so that the function h : A→ Ae, defined by h(b) = e ∧ b, is a
homomorphism from A onto Ae.

2. Ae is isomorphic to A/θ(e, 1). It follows that A = Ae × Ae′ for every
central element e, as in the Boolean case.

Proof (1)

e ∧ g(e ∧ b) = q(e, g(e ∧ b0, . . . , e ∧ bn−1), 0) Def. ∧
= q(e, g(q(e, b0, 0), . . . , q(e, bn−1, 0)), 0) Def. ∧
= q(e, q(e, g(b), g(0)), 0) Pr.1.4(3)
= q(e, g(b), 0) Pr.1.4(2)
= e ∧ g(b) Def. ∧

h(g(b)) = e ∧ g(b) Def. h
= e ∧ g(e ∧ b) First part of the proof
= ge(e ∧ b) Def. ge
= ge(h(b)) Def. h

(2) By (1) we have to show that the kernel of h is the congruence θ(e, 1).
Let h(b) = h(c), i.e. e ∧ b = e ∧ c. Recall that, by Proposition 1.3, q(e, b, c) is
the unique element u such that bθ(e, 1)uθ(e, 0)c. Since bθ(e, 1)q(e, b, 0)θ(e, 0)0
and cθ(e, 1)q(e, c, 0)θ(e, 0)0, then by e ∧ b = e ∧ c we obtain the conclusion

b θ(e, 1) e ∧ b = e ∧ c θ(e, 1) c,
i.e., bθ(e, 1)c.

In the opposite direction, we must show that h(e) = e∧e = q(e, e, 0) is equal
to h(1) = e ∧ 1 = q(e, 1, 0) = e (because e is central). However, by Proposition
1.4(2), q(e, e, 0) = q(e, q(e, 1, 0), 0) = q(e, 1, 0) = e. �

3 Semi-Boolean-like varieties

After recalling the notions of semi-Boolean-like algebras and varieties and the
main results concerning them, we compare these concepts with another gen-
eralisation of discriminator varieties, namely the quasi-discriminator varieties
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investigated in [14]. A weak Boolean product representation of semi-Boolean-
like algebras that is more informative than the general result stated above in
Theorems 2 and 3 concludes the section.

3.1 Preliminaries

In a generic Church algebra, of course, there is no need for the set of central ele-
ments to comprise all elements of the algebra — not any more than an arbitrary
ortholattice needs to be a Boolean algebra, or a ring with unit a Boolean ring.
In [15], Church algebras where the set of central elements comprises all elements
of the algebra were introduced and investigated under the label of Boolean-like
algebras, while the name of semi-Boolean-like algebras was reserved for the con-
cept defined below:

Definition 3 We say that a Church algebra A of type ν is a semi-Boolean-
like algebra (or a SBlA, for short) if it satisfies the following equations, for all
e, a, a1, a2 ∈ A, for every n-ary g ∈ ν, and for every b, c ∈ An:

Ax0. q(1, a, b) = a = q(0, b, a)

Ax1. q(e, a, a) = a

Ax2. q(e, q(e, a1, a2), a) = q(e, a1, a) = q(e, a1, q(e, a2, a))

Ax3. q(e, g(b), g(c)) = g(q(e, b1, c1), . . . , q(e, bn, cn)).

If A satisfies Ax0–Ax3 plus

Ax4 q(a, 1, 0) = a

then we say that A is a Boolean-like algebra (or a BlA, for short).

Definition 4 A variety V of type ν is a (semi-)Boolean-like variety if every
member of V is a (semi-)Boolean-like algebra with respect to the same term
q(x, y, z) and the same constants 0, 1.

It turns out that, if we define c(x) = q(x, 1, 0), an element a in a SBlA is
central just in case c (a) = a. By Ax4, therefore, BlAs are precisely those SBlAs
where every element is central. The next lemmas and proposition from [15] will
be useful in what follows:

Lemma 1 Let A be a SBlA. Then for all a, b, d ∈ A, q (a′, b, d) = q(a, d, b).

Lemma 2 Let A be a directly indecomposable SBlA. Then the following con-
ditions hold for all a, b, d ∈ A:

q(a, b, d) =

{
d if c(a) = 0

b if c(a) = 1
a′ = q(a, 0, 1) =

{
1 if c(a) = 0

0 if c(a) = 1

a ∨ b =
{
b if c(a) = 0

1 if c(a) = 1
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Proposition 2 For a Church variety V (w.r.t. the term q), the following are
equivalent:

1. V is semi-Boolean like;
2. V satisfies the conditions:
(i) for all a, b, c ∈ A ∈V, q(a, b, c) = q (c(a), b, c);

(ii) for all a ∈ A ∈V, c(a) is central;
3. V satisfies the condition 2(i) and the universal formula

c(0) ≈ 0 � c(1) ≈ 1 � ∀x(c(x) ≈ 0 � c(x) ≈ 1)

holds in every s.i. member of V.
The “pure semi-Boolean-like” variety SBlA0, consisting of all the term

reducts of the form (A; q, 0, 1) of SBlAs, and axiomatised by Ax0-Ax3 above, is of
independent interest. We say that a term t is V-idempotent if V �t (t (x)) ≈ t (x),
and V-compatible in case tA is an endomorphism in every A ∈ V . It can be
shown that the term c is SBlA0-compatible and SBlA0-idempotent and thus,
if A is a member of SBlA0, c[A] is a retract of A. Examples of members of
SBlA0 are:

Example 1 Let 3 = ({0, 1, 2}; q, 0, 1) be the Church algebra completely spec-
ified by the stipulation that q(0, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}. It can
be checked that 3 is semi-Boolean-like. However, c(2) = q(2, 1, 0) = 0 �= 2.
Moreover, 3 is a nonsimple subdirectly irreducible algebra, with the middle
congruence corresponding to the partition {{1}, {0, 2}}. Therefore V (3) is not
a discriminator variety, although it is a binary 1-discriminator variety in the
sense of [5] with binary 1-discriminator term y′ ∨ x.

Example 2 Let 3′ = ({0, 1, 2}; q, 0, 1) be the Church algebra completely spec-
ified by the stipulation that q(1, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}. It can
be checked that 3′ is semi-Boolean-like. However, c(2) = q(2, 1, 0) = 1 �= 2.
Moreover, 3′ is a nonsimple subdirectly irreducible algebra, with the middle
congruence corresponding to the partition {{0}, {1, 2}}. Therefore V (3′) is not
a discriminator variety, although it is a binary 0-discriminator variety with bi-
nary 0-discriminator term y′ ∧ x.

The algebras we just introduced are actually more than workaday examples
of pure SBlAs. In fact, let 4 be the fibred product 3×23

′, i.e. the algebra whose
universe is {(0, 0), (2, 0), (1, 2), (1, 1)} and whose factorisation is described by the
following self-explanatory diagram:

4

π2

��

π1 �� 3′

ker c

��
3

ker c
�� 2

We have that:
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Theorem 5 SBlA0 = V ({3,3′}) = V (4).

SBlA0 has three proper nontrivial subvarieties:

• ISBlA0, the subvariety generated by 3′, whose equational basis relative
to SBlA0 is given by the single identity x ∧ x ≈ x;

• J SBlA0, the subvariety generated by 3, whose equational basis relative
to SBlA0 is given by the single identity x ∨ x ≈ x;

• BlA0, the variety consisting of all the term reducts of the form (A; q, 0, 1)
of BlAs, generated by the two element BlA, whose equational basis relative
to SBlA0 is given either by the single identity x∧y ≈ y∧x, or by the two
idempotency identities x ∧ x ≈ x, x ∨ x ≈ x, or by the identity c(x) ≈ x.

More generally, a semi-Boolean-like variety is said to be meet idempotent if
it satisfies the identity

Ax5 : x ∧ x ≈ x.
(It is said to be join idempotent if it satisfies the identity x∨ x ≈ x). Although
an arbitrary semi-Boolean-like variety needs not be c-subtractive or c-regular
(c ∈ {0, 1}), a meet (join) idempotent semi-Boolean-like variety is always 0-
(1-)subtractive with witness term y′ ∧ x (y′ ∨ x). Adding 0- (1-)regularity con-
straints to the preceding concepts suffices to deliver double pointed discriminator
varieties, according to the following schema:

SBLA-variety

0-subtractive 1-subtractive

Meet idempotent SBLA-variety Join idempotent SBLA-variety

Double pointed discriminator

0-regular 1-regular

To be slightly more specific than the previous diagram allows us to be, the
next theorem characterises meet idempotent semi-Boolean-like varieties in the
context of semi-Boolean-like varieties:

Theorem 6 Let V be a semi-Boolean-like variety. Then the following condi-
tions are equivalent:

(i) V is meet idempotent;
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(ii) V is a unary discriminator variety* w.r.t. c;
(iii) The identity x ∨ x ≈ c(x) holds in V;
(iv) V is 0-subtractive with witness term y′ ∧ x.

Henceforth, consistently with our introduction, we will use the abbreviation
idempotent in place of the more cumbersome meet idempotent.

3.2 Quasi-discriminator varieties

To some extent, as mentioned above, semi-Boolean-like varieties generalise dis-
criminator varieties in the double-pointed case. A different generalisation of
discriminator varieties was suggested in [14] with the aim of explaining why
some varieties of algebras, which fail to be discriminator varieties, retain some
of the pleasing properties of such varieties nonetheless. The following concept,
currently under investigation, provides a significant clue towards a satisfactory
answer to this question.

Definition 5 Let V be a variety whose type ν includes a unary term �. More-
over, suppose that � is V-idempotent and V-compatible. V is a quasi-discrim-
inator variety w.r.t. � if there is a quaternary term s of type ν s.t., for every
s.i. member A of V and for all a, b, c, d ∈ A,

s (a, b, c, d) =

{
c if �a = �b
d if �a �= �b

Of course, discriminator varieties are a special case of quasi-discriminator
varieties when � is the identity. A variety which is quasi-discriminator w.r.t.
a nonidentity unary term is called properly quasi-discriminator. Examples of
properly quasi-discriminator varieties include Gödel algebras, product algebras
and other varieties of fuzzy logic [8], as well as regular Nelson residuated lattices
[4]. We now prove that:

Theorem 7 For a double pointed variety V, the following are equivalent:
1. (i) V is semi-Boolean-like w.r.t. the ternary term q and

(ii) c is V-compatible;
2. (i) V is a quasi-discriminator variety w.r.t. the unary term c, satisfying

c(0) ≈ 0 and c(1) ≈ 1, and

(ii) the universal formula

∀x(c(x) ≈ 0 � c(x) ≈ 1) (3.1)

holds in every directly indecomposable member of V.
*Recall that the unary discriminator on a double pointed set A (with constants 0, 1) is

a unary function u on A such that u(0) = 0 and u(a) = 1 for a �= 0. A variety V (K) of
type ν is a unary discriminator variety iff there is a unary term of type ν realising the unary
discriminator in all members of K.
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Proof (1) implies (2). Let x↔c y be defined as (x′ ∨ c(y)) ∧ (y′ ∨ c(x)), and
set

s (x, y, z, w) = q (x↔c y, z, w)

Observe that in a directly indecomposable algebra c(x) = c(y) iff c(x ↔c y) =
c(x)↔c c(y) = 1. Then, using Lemma 2 and Proposition 2, we get our conclu-
sion.

(2) implies (1). Let q(x, y, z) = s(x, 0, z, y). We observe the following facts:
(a) V satisfies c(0) ≈ 0 and c(1) ≈ 1 by our hypothesis;
(b) V is a Church variety, because q(0, a, b) = s(0, 0, b, a) = b and q(1, a, b) =

s(1, 0, b, a) = a;
(c) V � s(x, 0, z, y) ≈ s(c (x) , 0, z, y) as this identity holds in all s.i. members

of V , if we take into account the idempotency of c.
(d) q(x, y, z) ≈ q(c(x), y, z) holds by (c) and by the definition of q.
(e) V � c (x) ≈ q(x, 1, 0) (whence the term c given by our hypothesis coin-

cides with the term c as usually defined). In fact, let a ∈ A, where A is a s.i.
member of V . Then

q(a, 1, 0) = s(a, 0, 0, 1) = s(c(a), 0, 0, 1) =

{
0 if c (a) = 0
1 if c (a) = 1

.

(f) By (e), V � q(x, y, z) ≈ q(c(x), y, z).
Our conclusion now follows from Proposition 2. �

Observe that, if V has type (3, 0, 0), then Theorem 7.(2) above is equivalent
to Theorem 7.(1)(i) alone, because in this case c is V-compatible whenever V is
semi-Boolean like.

3.3 A representation theorem

Theorems 2 and 3 imply that every SBlA has a weak Boolean product repre-
sentation with directly indecomposable factors, because the directly indecom-
posable members of any SBlA variety can be defined via the universal formula

∀x (x ≈ c(x)⇒ x ≈ 0 � x ≈ 1) .

A more informative proof of this fact, however, can be given by modifying a
construction from [9] to the case that is of interest to us. Thus, let A be a SBlA
of type ν, and I a Boolean ideal of the Boolean algebra c [A] of central elements
of A. We start with a useful lemma.

Lemma 3 Let f, g ∈ Ce(A), f ≤ g, and let q(g, a, b) = b. Then q(f, a, b) = b.

Proof Observe that if f ≤ g in c [A], then q(g, f, 0) = f , for ∧c[A] coincides
with lattice meet. So

q(f, a, b) = q(q(g, f, 0), a, b)
= q(q(g, f, 0), q(g, a, a), q(g, a, b))) Hp., Ax1
= q(g, q(f, a, a), q(0, a, b)) Ax3
= q(g, a, b) Ax0, Ax1
= b Hp.

�
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We now define

θI = {(a, b) ∈ A2 : ∃e (e ∈ I � q(e, a, b) = a)}.
Lemma 4 The relation θI is a congruence.

Proof By Proposition 1

θI = {(a, b) ∈ A2 : ∃e (e ∈ I � (a, b) ∈ θ(e, 0))} =
∨
e∈I

θ(0, e).

Now,
∨

e∈I θ(0, e) is a congruence for I is an ideal of c [A]. �

Lemma 5 If a �= b ∈ A, then there is a maximal ideal I∗ on c[A] s.t. (a, b) �∈
θI∗.

Proof If a �= b, consider the set I = {e ∈ Ce(A) : q(e, a, b) = b}. Clearly,
0 ∈ I. Suppose that e, f ∈ I. Then:

q(e ∨ f, a, b) = q(q(e, 1, f), a, b) Def.
= q(q(e, 1, f), q(e, a, a), q(e, b, b)) Ax1
= q(e, q(1, a, b), q(f, a, b)) Ax3
= q(e, a, q(f, a, b)) Ax1
= q(e, a, b) = b. Hp.

If f ∈ I and e ≤ f , then by Lemma 3 we obtain that q(f, a, b) = b and thus
e ∈ I. Consequently, I is a non-void Boolean ideal of c [A]. Therefore, I can
be extended to a maximal ideal I∗ on c [A]. Now, suppose (a, b) ∈ θI∗ . Then,
there is an e ∈ I∗ s.t. q(e, a, b) = a and so q (e, b, a) = b, whence e′ ∈ I∗, which
is impossible. Then (a, b) �∈ θI∗ . �

Theorem 8 Every SBlA A is a weak Boolean product of directly indecompos-
able semi-Boolean-like algebras.

Proof (i) A is a subdirect product of semi-Boolean-like algebras. Let I be
the collection of all maximal Boolean ideals of c[A]. Let a, b ∈ A, and suppose
(a, b) ∈ ⋂ {θI : I ∈ I}. If a �= b, then, by Lemma 5, there is a maximal ideal I∗

s.t. (a, b) �∈ θI∗ , a contradiction. Therefore,
⋂ {θI : I ∈ I} = Δ, whence A is

subdirectly embeddable into
∏ {A/θI : I ∈ I}.

(ii) The stalks are directly indecomposable. Assume, by way of contradiction,
that A/θI is directly decomposable. Then there exists a nontrivial central
element a/θI ∈ A/θI . Consider the finite set Π of identities defining central
elements in the type of A. For every t ≈ s ∈ Π, we have in A/θI that t (a/θI) =
s (a/θI), whence there exists a central element e ∈ I s.t. (t(a), s(a)) ∈ θ(e, 0).
Define ϕ = θ(e, 0), ϕ = θ(e, 1), ψ = θ (a/ϕ, 0/ϕ), ψ = θ (a/ϕ, 1/ϕ). Then a/ϕ
is central in A/ϕ. Since A = A/ϕ ×A/ϕ and A/ϕ = (A/ϕ) /ψ × (A/ϕ) /ψ,
we get the following decomposition of A:

A = (A/ϕ) /ψ × ((A/ϕ) /ψ ×A/ϕ
)
.
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Therefore, there exists a central element d ∈ A such that (A/ϕ) /ψ = A/θ(d, 0).
Now, (a, 0) ∈ θ(d, 0), and, given the way ψ is defined, a/ϕ = d/ϕ. We claim
that d /∈ I, for suppose otherwise. Then θ(d, 0) ⊆ θI , and we would get a
homomorphism from A/θ(d, 0) to A/θI , which contradicts the fact that a/θI
is a nontrivial central element, thus establishing d /∈ I. Since I is maximal,
d′ ∈ I. So 0/θI = d′/θI is the complement of a/θI , which implies a/θI = 1/θI ,
a contradiction.

(iii) The subdirect representation is a weak Boolean representation. The
set {I ∈ I : aI = bI} is open because aI = bI iff aθIb iff there exists e ∈ I s.t.
q(e, a, b) = a iff aθJb for all J s.t. e ∈ J . Moreover, if U is clopen then there exists
e ∈ Ce(A) s.t. U = {I ∈ I : e ∈ I} and, consequently, I − U = {I ∈ I : e′ ∈ I},
but for every such e and given a, b ∈ A, there exists a unique c ∈ A (namely,
q(e, a, b)) s.t. (a, c) ∈ θ (e′, 0) and (b, c) ∈ θ(e, 0). �

4 Noncommutative Boolean Algebras

The significance of pointed discriminator varieties, as well as the extent to which
they generalise Boolean algebras in the pointed case, are more perspicuously ap-
preciated in light of the term equivalence result with left-handed skew Boolean
∩-algebras proved by Bignall and Leech (Theorem 9 below). Noncommutative
Boolean algebras, defined hereafter, play a similar role w.r.t. idempotent semi-
Boolean-like varieties, in consideration of the term equivalence result proved in
the sequel (Theorem 10). The investigation of noncommutative Boolean alge-
bras is preceded by a brief survey on skew Boolean ∩-algebras and other non-
commutative generalisations of lattices, included for the reader’s convenience.

4.1 Noncommutative lattice theory

Weakenings of lattices where the meet and join operations may fail to be commu-
tative attracted from time to time the attention of various communities of schol-
ars, including ordered algebra theorists (for their connection with preordered
sets) and semigroup theorists (who viewed them as structurally enriched bands
possessing a dual multiplication). Here we will review some basic definitions and
results on one such generalisation, probably the most interesting and successful:
the concept of skew lattice [11], in fact, along with the related notion of skew
Boolean algebra, has important connections with discriminator varieties; the
interested reader is referred to [12] or [16] for far more comprehensive accounts.

Definition 6 A band is a semigroup (A; ·) satisfying the identity xx ≈ x.
A band is regular if it satisfies xyxzx ≈ xyzx; it is left (right) regular if it
satisfies the identity xyx ≈ xy (xyx ≈ yx).

Left and right regular bands are obviously regular. Observe that, given a
band A, the relation

a ≤ b⇔ ab = a = ba

is a partial ordering on A.
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Definition 7 A double band is an algebra (A; +, ·) of type (2, 2) such that
the reducts (A; ·) and (A; +) are both bands. A double band satisfying the
absorption identities

x(x + y) ≈ x ≈ x+ xy;
(y + x)x ≈ x ≈ yx+ x.

is called a skew lattice. A skew lattice is called left handed (right handed) if the
reduct (A; ·) is left (right) regular and the reduct (A; +) is right (left) regular.

If we expand skew lattices by a subtraction operation and a constant 0, we
get the following noncommutative variant of Boolean algebras.

Definition 8 A skew Boolean algebra is an algebra A = (A; +, ·,−, 0) of type
(2, 2, 2, 0) such that:

• its reduct (A; +, ·) is a skew lattice satisfying the identities xyzx ≈ xzyx,
x(y + z) ≈ xy + xz and (y + z)x ≈ yx+ zx;

• 0 is left and right absorbing w.r.t. multiplication;

• the operation − satisfies the identities

xyx+ (x − y) ≈ x ≈ (x − y) + xyx;
xyx(x − y) ≈ 0 ≈ (x− y)xyx.

Skew Boolean algebras s.t. every finite set of their universe has an infimum
w.r.t. the underlying natural partial ordering of the algebra stand out for their
significance. It turns out that such algebras can be given an equational charac-
terisation provided we include the binary inf into the signature.

Definition 9 A skew Boolean ∩-algebra is an algebra A = (A; +, ·,∩,−, 0) of
type (2, 2, 2, 2, 0) s.t.:

• the reduct (A; +, ·,−, 0) is a skew Boolean algebra and the reduct (A;∩)
is a meet semilattice;

• A satisfies the identities

x ∩ (xyx) ≈ xyx;
x (x ∩ y) ≈ x ∩ y ≈ (x ∩ y)x.

The next theorem by Bignall and Leech [1] provides a powerful bridge be-
tween the theories of skew Boolean algebras and pointed discriminator varieties:

Theorem 9 (i) The variety of type (3, 0) generated by the class of all pointed
discriminator algebras A = (A; t, 0), where t is the discriminator function on A
and 0 is a constant, is term equivalent to the variety of left handed skew Boolean
∩-algebras.
(ii) Every discriminator variety is term equivalent to a variety V of left

handed skew Boolean ∩-algebras with additional operations (gi)i∈I such that, for
all algebras A ∈V, every congruence θ on the term reduct (A; t, 0) is compatible
with gi for all i ∈ I.
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4.2 Definition, examples and elementary properties

Definition 10 A noncommutative Boolean algebra is an algebra

A = (A; +, ·,′ , 0, 1)
of type (2, 2, 1, 0, 0) satisfying the following conditions for all a, b, c ∈ A:

(S0) (A; +, ·) is a double band;

(S1) 0 + a = a = a+ 0; 1 + a = 1;

(S2) 0a = a0 = 0; 1a = a;

(S3) a(b+ c) = ab+ ac; (b+ c)a = ba+ ca;

(S4) (a+ b)′ = a′b′; (ab)′ = a′ + b′;

(S5) aa′ = a′a = 0;

(S6) a+ a′ = a′ + a = a+ 1;

(S7) ba+ b′a = a.

Observe that S1 and S2 respectively say that (A; +) is a unital groupoid with
left absorbing element, and that (A; ·) is a groupoid with absorbing element and
left unit. “Noncommutative Boolean algebra” will be sometimes abbreviated by
NBA, and the variety of noncommutative Boolean algebras will be denoted by
NBA.

Definition 11 An algebra A = (A; +, ·,′ , 0, 1, g)g∈ν of type ν is said to be a
noncommutative Boolean algebra with additional regular operations iff it is an
NBA satisfying the identities

(S8) g(. . . , exi + e′yi, . . . ) ≈ e · g(. . . , xi, . . . ) + e′ · g(. . . , yi, . . . ) (g ∈ ν).

Lemma 6 S8 implies the identity (xy + x′z)′ ≈ xy′ + x′z′.

Proof By applying S8 to ′. �

Example 3 Let x + y = q(x, x, y). The (+,∧,′ , 0, 1)-term reduct of the pure
SBlA 4, i.e. the algebra whose operations are specified by the following tables:

′ 0 2 3 1
1 0 0 0

+ 0 2 3 1
0 0 2 3 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 1

∧ 0 2 3 1
0 0 0 0 0
2 0 2 3 1
3 0 2 3 1
1 0 2 3 1

is a NBA.
Observe that its subalgebra over the universe {0, 2, 1} is the (+,∧,′ , 0, 1)-

term reduct of the pure idempotent SBlA 3′.

The following lemma contains some useful properties of NBAs.
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Lemma 7 Every NBA satisfies the following identities:

(i) 0′ = 1 and 1′ = 0.

(ii) x+ yx ≈ x ≈ (x+ y)x;

(iii) yx+ x ≈ x;
(iv) x′′ ≈ x1;
(v) x+ xy ≈ x ≈ x(x + y);

(vi) x+ y ≈ x+ x′y;

(vii) xy + x ≈ x(y + x);

(viii) xy + xz + y + z ≈ y + z;

(ix) x(x + y)z ≈ x(y + x)z ≈ xz;
(x) x+ y + x ≈ x+ y;

(xi) xyx ≈ yx;
(xii) x′y + xz + y ≈ xz + y;

(xiii) xyz ≈ yxz;
(xiv) x′z + xy ≈ xy + x′z.

Proof For the remainder of the proof, fix a generic NBA A and arbitrary
elements a, b, c, d ∈ A.

(i) 1′ =(S2) 11
′ =(S5) 0 and 0′ =(S1) 0 + 0′ =(S6) 0 + 1 =(S1) 1.

(ii) (a+ b) a =(S3) aa+ ba =(S0) a+ ba =(S2) 1a+ ba =(S3) (1 + b) a =(S1)

1a =(S2) a.
(iii) Similar.
(iv) a1 =(i) a0

′ =(S5) a(aa
′)′ =(S4) a(a

′ + a′′) =(S3) (aa′) + (aa′′) =(S5)

0 + (aa′′) =(S1) aa
′′ =(S1) aa

′′ + 0 =(S5) aa
′′ + a′a′′ =(S7) a

′′.
(v) For a start, a(a + 1) =(S6) a(a+ a′) =(S3) aa+ aa′ =(S0) a + aa′ =(S5)

a + 0 =(S1) a. Therefore, a + ab = a(a + 1) + ab =(S3) a((a + 1) + b) =(S0)

a(a+ (1 + b)) =(S1) a(a+ 1) = a. The remaining statement is proved as in (ii).
(vi) a+ b =(S7) a+ (ab + a′b) =(S0) (a+ ab) + a′b =(v) a+ a′b.
(vii) By (S3) and (S0).
(viii) ab+ ac+ b+ c =(S3) a (b + c) + b+ c =(iii) b + c.
(ix) a(a + b)c = ac by (v). a(b + a)c =(vii) (ab + a)c =(S3) abc + ac =(S3)

a(bc+ c) =(iii) ac.
(x) a+ b+ a =(v) a+ b+ a(a+ b) =(ii) a+ b.
(xi) aba =(ii) (a+ ba)ba =(S0,S3) aba+ ba =(iii) ba.
(xii) a′b+ ac+ b =(S1,S2,S5) a

′ac+ a′b + ac+ b =(viii) ac+ b.
(xiii) bac =(xi) abac =(ix) aba(b+ a)c =(vii) ab(ab+ a)c =(ix) abc.
(xiv) a′c+ ab =(xii) a

′′ab+ a′c+ ab =(iv) a1ab+ a′c+ ab =(S0,S2) ab+ a′c+
ab =(x) ab+ a′c. �

By Lemma 7.(x),(xi), the reducts (A; ·) and (A; +) in an NBA are, respec-
tively, right regular and left regular as bands.
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4.3 A term equivalence result

Our next task on the agenda is trying to obtain an analogue of Theorem 9 for
idempotent semi-Boolean-like varieties. More precisely, we will prove that every
such variety is term equivalent to a variety of NBAs with additional regular
operations.

Consider the following correspondences between the algebraic similarity types
of NBA and of SBlA0:

q(x, y, z) � xy + x′z
x+ y � q(x, x, y)
xy � q(x, y, 0)
x′ � q(x, 0, 1)

Theorem 10 The above correspondences define a term equivalence between the
varieties ISBlA0 and NBA.

Proof If A is a pure idempotent SBlA and B is an NBA, we define

Aa = (A; +,∧,′ , 0, 1), B− = (B; q, 0, 1),

where q(x, y, z) = xy + x′z. We have to prove that:

(i) if A is a member of ISBlA0, then Aa is an NBA;

(ii) if B is an NBA, then B− is a member of ISBlA0;

(iii) (Aa)− = A and (B−)a = B.

(i) By way of example, let us check (S7).

ba+ b′a = q (q(b, a, 0), q(b, a, 0), q (b′, a, 0)) Def.
= q (q(b, a, 0), q(b, a, 0), q(b, 0, a)) L.1
= q (b, q (a, a, 0) , q (0, 0, a)) Ax3

= q(b, a, a) Ax5,Ax0

= a Ax1

(ii) Let B = (B; +, ·,′ , 0, 1) be an NBA. We prove the axioms of ISBlA0 for
the algebra B−. Throughout this proof, let a, b, . . . be generic elements of B.

(Ax0)
q(1, a, b) = 1a+ 1′b Def.

= 1a+ 0b L.7
= a+ 0 = a S2, S1

q(0, a, b) = 0a+ 0′b Def.
= 0 + 1b S2, L.7
= 0 + b = b S2

(Ax1) By S7, q(a, b, b) = ab+ a′b = b.
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(Ax2)
q(a, q(a, b, c), d) = a(ab+ a′c) + a′d Def.

= aab+ aa′c+ a′d S3
= ab+ 0c+ a′d S0, S5
= ab+ a′d S1, S2
= q(a, b, d)

q(a, b, q(a, c, d)) = ab+ a′(ac+ a′d) Def.
= ab+ a′ac+ a′a′d S3
= ab+ a′d S0, S1, S5
= q(a, b, d)

(Ax5) a ∧ a = q(a, a, 0) = aa+ a′0 = aa = a by S0, S1 and S2.

(Ax3) can be taken w.l.g. to denote an equality of the following form for the
pure variety:

q(a, b1c1 + b′1d1, b2c2 + b′2d2) = q(ab1 + a′b2, ac1 + a′c2, ad1 + a′d2).

In other words, we have to show that:

a(b1c1+b
′
1d1)+a

′(b2c2+b′2d2) = (ab1+a
′b2)(ac1+a′c2)+(ab1+a

′b2)′(ad1+a′d2)

Let r and s be the elements denoted, respectively, by the right-hand side and
by the left-hand side of the previous equality. Then:

r = (ab1 + a′b2)(ac1 + a′c2) + (ab1 + a′b2)′(ad1 + a′d2)
= (ab1 + a′b2)(ac1 + a′c2) + (ab1)

′(a′b2)′(ad1 + a′d2) S4
= (ab1 + a′b2)(ac1 + a′c2) + (a′ + b′1)(a′′ + b′2)(ad1 + a′d2) S4
= (ab1 + a′b2)ac1 + (ab1 + a′b2)a′c2

+ (a′ + b′1)(a
′′ + b′2)(ad1 + a′d2) S3

= ab1ac1 + a′b2ac1 + ab1a
′c2 + a′b2a′c2

+ (a′ + b′1)(a
′′ + b′2)(ad1 + a′d2) S3

= ab1ac1 + a′ab2c1 + aa′b1c2 + a′b2a′c2 + (a′ + b′1)(a′′

+ b′2)(ad1 + a′d2) L.7(xiii)
= ab1ac1 + 0 + 0 + a′b2a′c2 + (a′ + b′1)(a

′′ + b′2)(ad1 + a′d2) S2,S5
= ab1ac1 + a′b2a′c2 + (a′ + b′1)(a′′ + b′2)(ad1 + a′d2) S1
= ab1c1 + a′b2c2 + (a′ + b′1)(a

′′ + b′2)(ad1 + a′d2) L.7(xiii),S0
= ab1c1 + a′b2c2 + ((a′ + b′1)a

′′ + (a′ + b′1)b
′
2)(ad1 + a′d2) S3

= ab1c1 + a′b2c2 + (a′a′′ + b′1a
′′ + a′b′2 + b′1b

′
2)(ad1 + a′d2) S3

= ab1c1 + a′b2c2 + (b′1a
′′ + a′b′2 + b′1b

′
2)(ad1 + a′d2) S1,S5

= ab1c1 + a′b2c2 + b′1a′′ad1 + a′b′2ad1 + b′1b′2ad1 + b′1a′′a′d2
+ a′b′2a

′d2 + b′1b
′
2a

′d2 S3
= ab1c1 + a′b2c2 + b′1ad1 + a′b′2ad1 + b′1b

′
2ad1 + b′1a

′′a′d2
+ a′b′2a′d2 + b′1b′2a′d2 L.7(iv), S1, S0

= ab1c1 + a′b2c2 + b′1ad1 + 0 + b′1b
′
2ad1 + 0 + a′b′2a

′d2
+ b′1b

′
2a

′d2 S5,L.7(xiii), S2
= ab1c1 + a′b2c2 + b′1ad1 + b′1b

′
2ad1 + a′b′2a

′d2 + b′1b
′
2a

′d2 S1
= ab1c1 + a′b2c2 + b′1ad1 + b′1b

′
2ad1 + b′2a

′d2 + b′1b
′
2a

′d2 S0,L.7(xiii)
= ab1c1 + a′b2c2 + ab′1d1 + ab′1b′2d1 + a′b′2d2 + a′b′1b′2d2 L.7(xiii)
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s = a(b1c1 + b′1d1) + a′(b2c2 + b′2d2)
= a(b1c1 + b′1d1 + b′2b

′
1d1) + a′(b2c2 + b′2d2 + b′1b

′
2d2)

by Lemma 7(ii) applied to b′1d1 = b′1d1 + b′2b
′
1d1 etc.

= ab1c1 + ab′1d1 + ab′2b′1d1 + a′b2c2 + a′b′2d2 + a′b′1b′2d2 S3
= ab1c1 + ab′1d1 + a′b2c2 + ab′2b

′
1d1 + a′b′2d2 + a′b′1b

′
2d2 L.7(xiv)

= ab1c1 + a′b2c2 + ab′1d1 + ab′2b′1d1 + a′b′2d2 + a′b′1b′2d2 L.7(xiv)
= ab1c1 + a′b2c2 + ab′1d1 + ab′1b

′
2d1 + a′b′2d2 + a′b′1b

′
2d2 L.7(xiii)

(iii) We get:

qA
a−

(a, b, d) = ab+ a′d
= qA(qA(a, b, 0), qA(a, b, 0), qA(qA(a, 0, 1), d, 0))
= qA(qA(a, b, 0), qA(a, b, 0), qA(a, 0, d)) L.1
= qA(a, qA(b, b, 0), qA(0, 0, d)) Ax3

= qA(a, b, d) Ax0,Ax5

and similarly:

a+B−a

b =Def. aa+
B a′b =(S0) a+

B a′b =L.7(vi) a+
B b

a ·B−a

b =Def. a ·B b+ a′ ·B 0 =(S2) a ·B b + 0 =(S1) a ·B b

a′B
−a

=Def. a0 + a′B1 =(S2) 0 + a′B1 =(S1) a
′B1 =L.7(iv) a

′′′B = a′B,

since a′′′ = (a1)
′
= a′ + 1′ = a′ + 0 = a. �

Theorem 10 immediately implies that NBA is generated by 3′a (cf. Exam-
ples 2 and 3), i.e. the algebra whose operations are specified by the following
tables:

′ 0 2 1
1 0 0

+ 0 2 1
0 0 2 1
2 2 2 2
1 1 1 1

· 0 2 1
0 0 0 0
2 0 2 1
1 0 2 1

In full analogy with Theorem 9, the previous result can be likewise extended
to a generic idempotent semi-Boolean-like variety.

Theorem 11 Every idempotent semi-Boolean-like variety is term equivalent
to a variety of noncommutative Boolean algebras with additional regular opera-
tions.

Proof In the light of Theorem 10, our proof is almost complete. Let now V
be an idempotent semi-Boolean-like variety and let a, b, c ∈ A ∈V . We prove
that A satisfies S8, assuming w.l.g. that g is a binary operation.

g(ab+ a′c, d) = g(q(ab, ab, a′c), d) Def.
= g(q(a, q(b, b, 0), q(0, 0, c)), d) Ax3, L.1
= g(q(a, b, c), d) Ax0,Ax5

= q(a, g(b, d), g(c, d)) Ax3
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a · g(b, d) + a′ · g(c, d) = q(q(a, g(b, d), 0), q(a, g(b, d), 0), q(a′, g(c, d), 0)) Def.
= q(q(a, g(b, d), 0), q(a, g(b, d), 0), q(a, 0, g(c, d))) L.1
= q(a, q(g(b, d), g(b, d), 0), q(0, 0, g(c, d))) Ax3

= q(a, g(b, d), g(c, d)). Ax0,Ax5

In the opposite direction, let V be a variety of NBAs with additional regular
operations and let a, b, c ∈ A ∈V . We prove that A satisfies Ax3, assuming once
more that g is a binary operation.

g(q(a, b1, c1), q(a, b2, c2))
= g(ab1 + a′c1, ab2 + a′c2)
= a · g(b1, ab2 + a′c2) + a′ · g(c1, ab2 + a′c2) S8
= a(a · g(b1, b2) + a′ · g(b1, c2)) + a′(a · g(c1, b2) + a′ · g(c1, c2)) S8
= aa · g(b1, b2) + aa′ · g(b1, c2) + a′a · g(c1, b2) + a′a′ · g(c1, c2) S3
= aa · g(b1, b2) + 0 · g(b1, c2) + 0 · g(c1, b2) + a′a′ · g(c1, c2) S5
= aa · g(b1, b2) + a′a′ · g(c1, c2) S1, S2
= a · g(b1, b2) + a′ · g(c1, c2) S0
= q(a, g(b1, b2), g(c1, c2)).

�

We make a note of another immediate consequence of Theorems 10 and 11.

Corollary 1 Let A be an NBA. The following conditions are equivalent:

(i) A is a Boolean algebra;

(ii) A satisfies x1 ≈ x;
(iii) A− ∈ BlA0.

Proof (ii ⇔ i) Let the equation x1 ≈ x be satisfied. Then, we have:

(a) Commutativity of the product: ab = ab1 =L.7.xiii ba1 = ba.

(b) (b + 1 = 1):
b+ 1 = (b+ 1)1 =(S3) b1 + 1 =L.7.iii 1.

(c) a+ a′ = a′ + a = a+ 1 = 1 by (b) and S6.

(d) Distributivity of the sum with respect to the product:

(a+ b)(a+ d) = (a+ b)a+ (a+ b)d S3
= aa+ ba+ ad+ bd S3
= a+ ab+ ad+ bd S0,(a)
= a1 + ab+ ad+ bd
= a(1 + b+ d) + bd S3
= a1 + bd = a+ bd S1

(e) (a′′ = a): a′′ =L.7.iv a1 = a.

(f) Commutativity of the sum: a + b = (a + b)′′ = (a′b′)′ =(a) (b′a′)′ =
(b + a)′′ = b+ a.

(ii ⇔ iii) Since a1 = q(a, 1, 0) = c(a), then we have c(a) = a (that is,
(A; q, 1, 0) is a BlA) iff a1 = a. �

Acknowledgements We thank the referee for his valuable suggestions.
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